skip to main content


Search for: All records

Award ID contains: 1923495

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Evolutionary rescue occurs when genetic change allows a population to persist in response to an environmental change that would otherwise have led to extinction. Most studies of evolutionary rescue assume that species have either fully clonal or fully sexual reproduction; however, many species have partially clonal reproductive strategies in which they reproduce both clonally and sexually. Furthermore, the few evolutionary rescue studies that have evaluated partially clonal reproduction did not consider fluctuations in the environment, which are nearly ubiquitous in nature. Here, we use individual‐based simulations to investigate how environmental fluctuations (either uncorrelated or positively autocorrelated) influence the effect of clonality on evolutionary rescue. We show that, for moderate magnitudes of environmental fluctuations, as was found in the absence of fluctuations, increasing the degree of clonality increases the probability of population persistence in response to an abrupt environmental change, but decreases persistence in response to a continuous, directional environmental change. However, with large magnitudes of fluctuations, both the benefits of clonality following a step change and the detrimental effects of clonality following a continuous, directional change are generally reduced; in fact, in the latter scenario, increasing clonality can even become beneficial if environmental fluctuations are autocorrelated. We also show that increased generational overlap dampens the effects of environmental fluctuations. Overall, we demonstrate that understanding the evolutionary rescue of partially clonal organisms requires not only knowledge of the species life history and the type of environmental change, but also an understanding of the magnitude and autocorrelation of environmental fluctuations.

     
    more » « less
  2. null (Ed.)
  3. Murphy, William (Ed.)
    Abstract Organisms across the tree of life have complex life cycles that include both sexual and asexual reproduction or that are obligately asexual. These organisms include ecologically dominant species that structure many terrestrial and marine ecosystems, as well as many pathogens, pests, and invasive species. We must consider both the evolution and maintenance of these various reproductive modes and how these modes shape the genetic diversity, adaptive evolution, and ability to persist in the species that exhibit them. Thus, having a common framework is a key aspect of understanding the biodiversity that shapes our planet. In the 2019 AGA President’s Symposium, Sex and Asex: The genetics of complex life cycles, researchers investigating a wide range of taxonomic models and using a variety of modes of investigation coalesced around a common theme—understanding not only how such complex life cycles may evolve, but how they are shaped by the evolutionary and ecological forces around them. In this introduction to the Special Issue from the symposium, we give an overview of some of the key ideas and areas of investigation (a common clonal lexicon, we might say) and introduce the breadth of work submitted by symposium participants. 
    more » « less