skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Environmental fluctuations dampen the effects of clonal reproduction on evolutionary rescue

Evolutionary rescue occurs when genetic change allows a population to persist in response to an environmental change that would otherwise have led to extinction. Most studies of evolutionary rescue assume that species have either fully clonal or fully sexual reproduction; however, many species have partially clonal reproductive strategies in which they reproduce both clonally and sexually. Furthermore, the few evolutionary rescue studies that have evaluated partially clonal reproduction did not consider fluctuations in the environment, which are nearly ubiquitous in nature. Here, we use individual‐based simulations to investigate how environmental fluctuations (either uncorrelated or positively autocorrelated) influence the effect of clonality on evolutionary rescue. We show that, for moderate magnitudes of environmental fluctuations, as was found in the absence of fluctuations, increasing the degree of clonality increases the probability of population persistence in response to an abrupt environmental change, but decreases persistence in response to a continuous, directional environmental change. However, with large magnitudes of fluctuations, both the benefits of clonality following a step change and the detrimental effects of clonality following a continuous, directional change are generally reduced; in fact, in the latter scenario, increasing clonality can even become beneficial if environmental fluctuations are autocorrelated. We also show that increased generational overlap dampens the effects of environmental fluctuations. Overall, we demonstrate that understanding the evolutionary rescue of partially clonal organisms requires not only knowledge of the species life history and the type of environmental change, but also an understanding of the magnitude and autocorrelation of environmental fluctuations.

more » « less
Award ID(s):
1923495 1923513
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Evolutionary Biology
Medium: X Size: p. 710-722
["p. 710-722"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The genomic variation of an invasive species may be affected by complex demographic histories and evolutionary changes during the invasion. Here, we describe the relative influence of bottlenecks, clonality, and population expansion in determining genomic variability of the widespread red macroalgaAgarophyton vermiculophyllum. Its introduction from mainland Japan to the estuaries of North America and Europe coincided with shifts from predominantly sexual to partially clonal reproduction and rapid adaptive evolution. A survey of 62,285 SNPs for 351 individuals from 35 populations, aligned to 24 chromosome‐length scaffolds indicate that linkage disequilibrium (LD), observed heterozygosity (Ho), Tajima's D, and nucleotide diversity (Pi) were greater among non‐native than native populations. Evolutionary simulations indicate LD and Tajima's D were consistent with a severe population bottleneck. Also, the increased rate of clonal reproduction in the non‐native range could not have produced the observed patterns by itself but may have magnified the bottleneck effect on LD. Elevated marker diversity in the genetic source populations could have contributed to the increasedHoand Pi observed in the non‐native range. We refined the previous invasion source region to a ~50 km section of northeastern Honshu Island. Outlier detection methods failed to reveal any consistently differentiated loci shared among invaded regions, probably because of the complexA. vermiculophyllumdemographic history. Our results reinforce the importance of demographic history, specifically founder effects, in driving genomic variation of invasive populations, even when localized adaptive evolution and reproductive system shifts are observed.

    more » « less
  2. Abstract

    Rapid environmental change presents a significant challenge to the persistence of natural populations. Rapid adaptation that increases population growth, enabling populations that declined following severe environmental change to grow and avoid extinction, is called evolutionary rescue. Numerous studies have shown that evolutionary rescue can indeed prevent extinction. Here, we extend those results by considering the demographic history of populations. To evaluate how demographic history influences evolutionary rescue, we created 80 populations of red flour beetle,Tribolium castaneum, with three classes of demographic history: diverse populations that did not experience a bottleneck, and populations that experienced either an intermediate or a strong bottleneck. We subjected these populations to a new and challenging environment for six discrete generations and tracked extinction and population size. Populations that did not experience a bottleneck in their demographic history avoided extinction entirely, while more than 20% of populations that experienced an intermediate or strong bottleneck went extinct. Similarly, among the extant populations at the end of the experiment, adaptation increased the growth rate in the novel environment the most for populations that had not experienced a bottleneck in their history. Taken together, these results highlight the importance of considering the demographic history of populations to make useful and effective conservation decisions and management strategies for populations experiencing environmental change that pushes them toward extinction.

    more » « less
  3. Abstract

    Sex is a crucial process that has molecular, genetic, cellular, organismal, and population‐level consequences for eukaryotic evolution. Eukaryotic life cycles are composed of alternating haploid and diploid phases but are constrained by the need to accommodate the phenotypes of these different phases. Critical gaps in our understanding of evolutionary drivers of the diversity in algae life cycles include how selection acts to stabilize and change features of the life cycle. Moreover, most eukaryotes are partially clonal, engaging in both sexual and asexual reproduction. Yet, our understanding of the variation in their reproductive systems is largely based on sexual reproduction in animals or angiosperms. The relative balance of sexual versus asexual reproduction not only controls but also is in turn controlled by standing genetic variability, thereby shaping evolutionary trajectories. Thus, we must quantitatively assess the consequences of the variation in life cycles on reproductive systems. Algae are a polyphyletic group spread across many of the major eukaryotic lineages, providing powerful models by which to resolve this knowledge gap. There is, however, an alarming lack of data about the population genetics of most algae and, therefore, the relative frequency of sexual versus asexual processes. For many algae, the occurrence of sexual reproduction is unknown, observations have been lost in overlooked papers, or data on population genetics do not yet exist. This greatly restricts our ability to forecast the consequences of climate change on algal populations inhabiting terrestrial, aquatic, and marine ecosystems. This perspective summarizes our extant knowledge and provides some future directions to pursue broadly across micro‐ and macroalgal species.

    more » « less
  4. Mitchell, Patrick (Ed.)
    Abstract In highly disturbed environments, clonality facilitates plant survival via resprouting after disturbance, resource sharing among interconnected stems and vegetative reproduction. These traits likely contribute to the encroachment of deep-rooted clonal shrubs in tallgrass prairie. Clonal shrubs have access to deep soil water and are typically thought of as relatively insensitive to environmental variability. However, how leaf physiological traits differ among stems within individual clonal shrubs (hereafter ‘intra-clonal’) in response to extreme environmental variation (i.e. drought or fire) is unclear. Accounting for intra-clonal differences among stems in response to disturbance is needed to more accurately parameterize models that predict the effects of shrub encroachment on ecosystem processes. We assessed intra-clonal leaf-level physiology of the most dominant encroaching shrub in Kansas tallgrass prairie, Cornus drummondii, in response to precipitation and fire. We compared leaf gas exchange rates from the periphery to centre within shrub clones during a wet (2015) and extremely dry (2018) year. We also compared leaf physiology between recently burned shrubs (resprouts) with unburned shrubs in 2018. Resprouts had higher gas exchange rates and leaf nitrogen content than unburned shrubs, suggesting increased rates of carbon gain can contribute to recovery after fire. In areas recently burned, resprouts had higher gas exchange rates in the centre of the shrub than the periphery. In unburned areas, leaf physiology remained constant across the growing season within clonal shrubs (2015 and 2018). Results suggest single measurements within a shrub are likely sufficient to parameterize models to understand the effects of shrub encroachment on ecosystem carbon and water cycles, but model parameterization may require additional complexity in the context of fire. 
    more » « less
  5. Abstract

    The world is changing at a rapid rate, threatening extinction for a large part of the world's biota. One potential response to those altered conditions is to evolve so as to be able to persist in place. Such evolution includes not just traits themselves, but also the phenotypic plasticity of those traits. We used individual‐based simulations to explore the potential of an evolving phenotypic plasticity to increase the probability of persistence in the response to either a step change or continual, directional change in the environment accompanied by within‐generation random environmental fluctuations. Populations could evolve by altering both their nonplastic and plastic genetic components. We found that phenotypic plasticity enhanced survival and adaptation if that plasticity was not costly. If plasticity was costly, for it to be beneficial the phenotypic magnitude of plasticity had to be great enough in the initial generations to overcome those costs. These results were not sensitive to either the magnitude of the within‐generation correlation between the environment of development and the environment of selection or the magnitude of the environmental fluctuations, except for very small phenotypic magnitudes of plasticity. So, phenotypic plasticity has the potential to enhance survival; however, more data are needed on the ubiquity of trait plasticity, the extent of costs of plasticity, and the rate of mutational input of genetic variation for plasticity.

    more » « less