skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1924096

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To cut CO2emissions, we propose to directly convert shale gas into value-added products with a new H2/O2co-transport membrane (HOTM) reactor. A Multiphysics model has been built to simulate the membrane and the catalytic bed with parameters obtained from experimental validation. The model was used to compare C2 yield and CH4conversion rate between the membrane reactor and the state-of-the-art fixed-bed reactor with the same dimensions and operating conditions. The results indicate that (1) the membrane reactor is more efficient in consuming CH4for a given amount of fed O2. (2) The C2 selectivity of the membrane reactor is higher due to the gradual addition of O2into the reactor. (3) The current proposed membrane reactor can have a decent proton molar flux density but most of the proton molar flux will contribute to producing H2O on the feed side under the current operating conditions. The paper for the first-time projects the performance of the membrane reactor for combined H2O/H2removal and C2 production. It could be used as important guidance for experimentalists to design next generation natural gas conversion reactors.

     
    more » « less
  2. In this study, we simulated BZY electrolyte-supported proton-conducting solid oxide cell by coupling surface defect chemistry reaction with charged species transport. We validated the model parameters by concentration as a function of temperature, conductivity under dry and wet oxygen as a function of oxygen partial pressure and temperature. The results indicate that the high electron-hole mobility (diffusivity) is mainly responsible for the high leaking current under high temperatures. The Faradaic efficiency stays low or even negative under low operating voltage or high temperature and plateaus as the cell voltage increases. The model developed in this study is a useful tool to understand the leaking current in BZY electrolyte and provide design strategies to avoid/mitigate such significant inefficiency for water electrolysis operation. 
    more » « less