Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Signals of natural selection can be quickly eroded in high gene flow systems, curtailing efforts to understand how and when genetic adaptation occurs in the ocean. This long‐standing, unresolved topic in ecology and evolution has renewed importance because changing environmental conditions are driving range expansions that may necessitate rapid evolutionary responses. One example occurs in Kellet's whelk (Kelletia kelletii), a common subtidal gastropod with an ~40‐ to 60‐day pelagic larval duration that expanded their biogeographic range northwards in the 1970s by over 300 km. To test for genetic adaptation, we performed a series of experimental crosses with Kellet's whelk adults collected from their historical (HxH) and recently expanded range (ExE), and conducted RNA‐Seq on offspring that we reared in a common garden environment. We identified 2770 differentially expressed genes (DEGs) between 54 offspring samples with either only historical range (HxH offspring) or expanded range (ExE offspring) ancestry. Using SNPs called directly from the DEGs, we assigned samples of known origin back to their range of origin with unprecedented accuracy for a marine species (92.6% and 94.5% for HxH and ExE offspring, respectively). The SNP with the highest predictive importance occurred on triosephosphate isomerase (TPI), an essential metabolic enzyme involved in cold stress response.TPIwas significantly upregulated and contained a non‐synonymous mutation in the expanded range. Our findings pave the way for accurately identifying patterns of dispersal, gene flow and population connectivity in the ocean by demonstrating that experimental transcriptomics can reveal mechanisms for how marine organisms respond to changing environmental conditions.more » « less
-
Abstract Introduced and invasive species make excellent natural experiments for investigating rapid evolution. Here, we describe the effects of genetic drift and rapid genetic adaptation in pink salmon (Oncorhynchus gorbuscha) that were accidentally introduced to the Great Lakes via a single introduction event 31 generations ago. Using whole‐genome resequencing for 134 fish spanning five sample groups across the native and introduced range, we estimate that the source population's effective population size was 146,886 at the time of introduction, whereas the founding population's effective population size was just 72—a 2040‐fold decrease. As expected with a severe founder event, we show reductions in genome‐wide measures of genetic diversity, specifically a 37.7% reduction in the number of SNPs and an 8.2% reduction in observed heterozygosity. Despite this decline in genetic diversity, we provide evidence for putative selection at 47 loci across multiple chromosomes in the introduced populations, including missense variants in genes associated with circadian rhythm, immunological response and maturation, which match expected or known phenotypic changes in the Great Lakes. For one of these genes, we use a species‐specific agent‐based model to rule out genetic drift and conclude our results support a strong response to selection occurring in a period gene (per2) that plays a predominant role in determining an organism's daily clock, matching large day length differences experienced by introduced salmon during important phenological periods. Together, these results inform how populations might evolve rapidly to new environments, even with a small pool of standing genetic variation.more » « less
-
Abstract How to identify the drivers of population connectivity remains a fundamental question in ecology and evolution. Answering this question can be challenging in aquatic environments where dynamic lake and ocean currents coupled with high levels of dispersal and gene flow can decrease the utility of modern population genetic tools. To address this challenge, we used RAD‐Seq to genotype 959 yellow perch (Perca flavescens), a species with an ~40‐day pelagic larval duration (PLD), collected from 20 sites circumscribing Lake Michigan. We also developed a novel, integrative approach that couples detailed biophysical models with eco‐genetic agent‐based models to generate “predictive” values of genetic differentiation. By comparing predictive and empirical values of genetic differentiation, we estimated the relative contributions for known drivers of population connectivity (e.g., currents, behavior, PLD). For the main basin populations (i.e., the largest contiguous portion of the lake), we found that high gene flow led to low overall levels of genetic differentiation among populations (FST = 0.003). By far the best predictors of genetic differentiation were connectivity matrices that were derived from periods of time when there were strong and highly dispersive currents. Thus, these highly dispersive currents are driving the patterns of population connectivity in the main basin. We also found that populations from the northern and southern main basin are slightly divergent from one another, while those from Green Bay and the main basin are highly divergent (FST = 0.11). By integrating biophysical and eco‐genetic models with genome‐wide data, we illustrate that the drivers of population connectivity can be identified in high gene flow systems.more » « less
-
Climate-driven warming and changes in major ocean currents enable poleward larval transport and range expansions of many marine species. Here, we report the population genetic structure of the gastropodKelletia kelletii, a commercial fisheries species and subtidal predator with top-down food web effects, whose populations have recently undergone climate-driven northward range expansion. We used reduced representation genomic sequencing (RAD-seq) to genotype 598 adults from 13 locations spanning approximately 800 km across the historical and expanded range of this species. Analyses of 40747 single nucleotide polymorphisms (SNPs) showed evidence for long-distance dispersal ofK. kelletiilarvae from a central historical range site (Point Loma, CA, USA) hundreds of km into the expanded northern range (Big Creek, CA), which seems most likely to result from transport during an El Niño-Southern Oscillation (ENSO) event rather than consistent on-going gene flow. Furthermore, the high genetic differentiation among some sampled expanded-range populations and their close genetic proximity with distinct populations from the historical range suggested multiple origins of the expanded-range populations. Given that the frequency and magnitude of ENSO events are predicted to increase with climate change, understanding the factors driving changes in population connectivity is crucial for establishing effective management strategies to ensure the persistence of this and other economically and ecologically important species.more » « lessFree, publicly-accessible full text available January 30, 2026
-
Genomic data are ubiquitous across disciplines, from agriculture to biodiversity, ecology, evolution and human health. However, these datasets often contain noise or errors and are missing information that can affect the accuracy and reliability of subsequent computational analyses and conclusions. A key step in genomic data analysis is filtering — removing sequencing bases, reads, genetic variants and/or individuals from a dataset — to improve data quality for downstream analyses. Researchers are confronted with a multitude of choices when filtering genomic data; they must choose which filters to apply and select appropriate thresholds. To help usher in the next generation of genomic data filtering, we review and suggest best practices to improve the implementation, reproducibility and reporting standards for filter types and thresholds commonly applied to genomic datasets. We focus mainly on filters for minor allele frequency, missing data per individual or per locus, linkage disequilibrium and Hardy–Weinberg deviations. Using simulated and empirical datasets, we illustrate the large effects of different filtering thresholds on common population genetics statistics, such as Tajima’s D value, population differentiation (FST), nucleotide diversity (π) and effective population size (Ne).more » « less
-
Next-generation sequencing technologies, such as Nanopore MinION, Illumina Hiseq and Novaseq, and PacBio Sequel II, hold immense potential for advancing genomic research on non-model organisms, including the vast majority of marine species. However, application of these technologies to marine invertebrate species is often impeded by challenges in extracting and purifying their genomic DNA due to high polysaccharide content and other secondary metabolites. In this study, we help resolve this issue by developing and testing DNA extraction protocols for Kellet’s whelk (Kelletia kelletii), a subtidal gastropod with ecological and commercial importance, by comparing four DNA extraction methods commonly used in marine invertebrate studies. In our comparison of extraction methods, the Salting Out protocol was the least expensive, produced the highest DNA yields, produced consistent high DNA quality, and had low toxicity. We validated the protocol using an independent set of tissue samples, then applied it to extract high-molecular-weight (HMW) DNA from over three thousand Kellet’s whelk tissue samples. The protocol demonstrated scalability and, with added clean-up, suitability for RAD-seq, GT-seq, as well as whole genome sequencing using both long read (ONT MinION) and short read (Illumina NovaSeq) sequencing platforms. Our findings offer a robust and versatile DNA extraction and clean-up protocol for supporting genomic research on non-model marine organisms, to help mediate the under-representation of invertebrates in genomic studies.more » « less
-
Environmentally covarying local adaptation is a form of cryptic local adaptation in which the covariance of the genetic and environmental effects on a phenotype obscures the divergence between locally adapted genotypes. Here, we systematically document the magnitude and drivers of the genetic effect (V G ) for two forms of environmentally covarying local adaptation: counter- and cogradient variation. Using a hierarchical Bayesian meta-analysis, we calculated the overall effect size of V G as 1.05 and 2.13 for populations exhibiting countergradient or cogradient variation, respectively. These results indicate that the genetic contribution to phenotypic variation represents a 1.05 to 2.13 s.d. change in trait value between the most disparate populations depending on if populations are expressing counter- or cogradient variation. We also found that while there was substantial variance among abiotic and biotic covariates, the covariates with the largest mean effects were temperature (2.41) and gamete size (2.81). Our results demonstrate the pervasiveness and large genetic effects underlying environmentally covarying local adaptation in wild populations and highlight the importance of accounting for these effects in future studies.more » « less
An official website of the United States government
