skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Genomic DNA extraction optimization and validation for genome sequencing using the marine gastropod Kellet’s whelk
Next-generation sequencing technologies, such as Nanopore MinION, Illumina Hiseq and Novaseq, and PacBio Sequel II, hold immense potential for advancing genomic research on non-model organisms, including the vast majority of marine species. However, application of these technologies to marine invertebrate species is often impeded by challenges in extracting and purifying their genomic DNA due to high polysaccharide content and other secondary metabolites. In this study, we help resolve this issue by developing and testing DNA extraction protocols for Kellet’s whelk (Kelletia kelletii), a subtidal gastropod with ecological and commercial importance, by comparing four DNA extraction methods commonly used in marine invertebrate studies. In our comparison of extraction methods, the Salting Out protocol was the least expensive, produced the highest DNA yields, produced consistent high DNA quality, and had low toxicity. We validated the protocol using an independent set of tissue samples, then applied it to extract high-molecular-weight (HMW) DNA from over three thousand Kellet’s whelk tissue samples. The protocol demonstrated scalability and, with added clean-up, suitability for RAD-seq, GT-seq, as well as whole genome sequencing using both long read (ONT MinION) and short read (Illumina NovaSeq) sequencing platforms. Our findings offer a robust and versatile DNA extraction and clean-up protocol for supporting genomic research on non-model marine organisms, to help mediate the under-representation of invertebrates in genomic studies.  more » « less
Award ID(s):
1924537 1924505 1924604
PAR ID:
10499969
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
PeerJ
Date Published:
Journal Name:
PeerJ
Volume:
11
ISSN:
2167-8359
Page Range / eLocation ID:
e16510
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-throughput short-read sequencing has taken on a central role in research and diagnostics. Hundreds of different assays take advantage of Illumina short-read sequencers, the predominant short-read sequencing technology available today. Although other short-read sequencing technologies exist, the ubiquity of Illumina sequencers in sequencing core facilities and the high capital costs of these technologies have limited their adoption. Among a new generation of sequencing technologies, Oxford Nanopore Technologies (ONT) holds a unique position because the ONT MinION, an error-prone long-read sequencer, is associated with little to no capital cost. Here we show that we can make short-read Illumina libraries compatible with the ONT MinION by using the rolling circle to concatemeric consensus (R2C2) method to circularize and amplify the short library molecules. This results in longer DNA molecules containing tandem repeats of the original short library molecules. This longer DNA is ideally suited for the ONT MinION, and after sequencing, the tandem repeats in the resulting raw reads can be converted into high-accuracy consensus reads with similar error rates to that of the Illumina MiSeq. We highlight this capability by producing and benchmarking RNA-seq, ChIP-seq, and regular and target-enriched Tn5 libraries. We also explore the use of this approach for rapid evaluation of sequencing library metrics by implementing a real-time analysis workflow. 
    more » « less
  2. Hom, Erik F. (Ed.)
    ABSTRACT Microbiomes have gained significant attention in ecological research, owing to their diverse interactions and essential roles within different organismal ecosystems. Microorganisms, such as bacteria, archaea, and viruses, have profound impact on host health, influencing digestion, metabolism, immune function, tissue development, and behavior. This study investigates the microbiome diversity and function of Kellet’s whelk (Kelletia kelletii) perivitelline fluid (PVF), which sustains thousands of developingK. kelletiiembryos within a polysaccharide and protein matrix. Our core microbiome analysis reveals a diverse range of bacteria, with theRoseobactergenus being the most abundant. Additionally, genes related to host-microbe interactions, symbiosis, and quorum sensing were detected, indicating a potential symbiotic relationship between the microbiome and Kellet’s whelk embryos. Furthermore, the microbiome exhibits gene expression related to antibiotic biosynthesis, suggesting a defensive role against pathogenic bacteria and potential discovery of novel antibiotics. Overall, this study sheds light on the microbiome’s role in Kellet’s whelk development, emphasizing the significance of host-microbe interactions in vulnerable life history stages. To our knowledge, ours is the first study to use 16S sequencing coupled with RNA sequencing (RNA-seq) to profile the microbiome of an invertebrate PVF.IMPORTANCEThis study provides novel insight to an encapsulated system with strong evidence of symbiosis between the microbial inhabitants and developing host embryos. The Kellet’s whelk perivitelline fluid (PVF) contains microbial organisms of interest that may be providing symbiotic functions and potential antimicrobial properties during this vulnerable life history stage. This study, the first to utilize a comprehensive approach to investigating Kellet’s whelk PVF microbiome, couples 16S rRNA gene long-read sequencing with RNA-seq. This research contributes to and expands our knowledge on the roles of beneficial host-associated microbes. 
    more » « less
  3. We describe here a flexible protocol for eDNA metabarcoding with Oxford Nanopore's MinIon MK1C platform from sampling to sequencing. The first section summarizes some key steps of sampling and sample preservation for both aquatic and terrestrial environments. The second one describes the DNA extraction protocol with the DNeasy PowerSoil Pro Kit of Qiagen for different types of samples (i.e., soil, liquid and dead plant materials). Our DNA amplification and bead purification protocols are characterized in the third section. Finally, the library prep with the Native amplicon Barcoding Kit 96 V14 (SQK-NBD114.96) and sequencing with the R10.4.1 flow cells (FLO-MIN114) and MinION Mk1C device are presented in the last sections. This protocol has been optimized for protists (microbial eukaryotes) and 18S marker, but should be easily adjustable for other organisms, by modifying the sampling and DNA extraction sections, or other markers, even longer ones such as the full ribosomal operon, if need be. Our goal is to teach/train researchers from different fields and different expertise on obtaining nanopore sequences from environmental samples by guiding them from protocol to protocol, focusing on the key steps, and informing them of the expected results based on our 3 runs performed so far. A comprehensive bioinformatic pipeline to treat the data produced, as well as a methodological article discussing this method and the best ways to use it are in preparation. 
    more » « less
  4. Understanding the genomic characteristics of non-model organisms can bridge research gaps between ecology and evolution. However, the lack of a reference genome and transcriptome for these species makes their study challenging. Here, we complete the first full genome and transcriptome sequence assembly of the non-model organism Kellet’s whelk,Kelletia kelletii, a marine gastropod exhibiting a poleward range expansion coincident with climate change. We used a combination of Oxford Nanopore Technologies, PacBio, and Illumina sequencing platforms and integrated a set of bioinformatic pipelines to create the most complete and contiguous genome documented among the Buccinoidea superfamily to date. Genome validation revealed relatively high completeness with low missing metazoan Benchmarking Universal Single-Copy Orthologs (BUSCO) and an average coverage of ∼70x for all contigs. Genome annotation identified a large number of protein-coding genes similar to some other closely related species, suggesting the presence of a complex genome structure. Transcriptome assembly and analysis of individuals during their period of peak embryonic development revealed highly expressed genes associated with specific Gene Ontology (GO) terms and metabolic pathways, most notably lipid, carbohydrate, glycan, and phospholipid metabolism. We also identified numerous heat shock proteins (HSPs) in the transcriptome and genome that may be related to coping with thermal stress during the sessile life history stage. A robust reference genome and transcriptome for the non-model organismK. kelletiiprovide resources to enhance our understanding of its ecology and evolution and potential mechanisms of range expansion for marine species facing environmental changes. 
    more » « less
  5. Abstract BackgroundModern plant breeding strategies rely on the intensive use of advanced genomic tools to expedite the development of improved crop varieties. Genomic DNA extraction from crop seeds eliminates the need to grow plants in contrast to fresh leaf tissue; however, it can still be a bottleneck due to the presence of stored compounds and the complexity of the matrix. The interaction of environmentally benign choline-based ionic liquids (ILs) with DNA offers an innovative approach to enhance the quality of extracted DNA from seeds. While prior IL-based plant DNA extraction workflows have primarily supported polymerase chain reaction (PCR) and quantitative PCR-based applications, their suitability for high-throughput sequencing (HTS) remained largely unexplored. This study explores the efficacy of IL-assisted method for genomic DNA extraction from soybean (Glycine max) seeds, addressing the limited application of ILs in HTS. ResultsThe optimized DNA extraction method, utilizing 25% (w/v) choline formate, enabled the recovery of high-purity DNA with abundant fragment sizes > 20 kb, suitable for downstream applications including PCR, whole genome amplification (WGA), simple sequence repeat (SSR) amplification, and high-throughput Illumina sequencing. The IL-method was benchmarked against a silica-binding method using cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) as lysis agents using a commercial plant DNA extraction kit in terms of DNA yield, purity, abundant DNA fragment size distribution, and integrity. In addition, DNA isolated from this method demonstrated successful PCR amplification of markers from both the nuclear and plastid genomes and yielded > 99% whole genome coverage with Illumina (PE150) sequencing reads. ConclusionsThis is the first known instance of a whole genome sequence generated from DNA extracted with ILs. These findings mark a significant milestone in establishing ILs as promising alternatives to conventional methods for seed DNA extraction, with potential utility in third generation (long-read) sequencing experiments. 
    more » « less