skip to main content


Search for: All records

Award ID contains: 1924537

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hom, Erik F. (Ed.)
    ABSTRACT

    Microbiomes have gained significant attention in ecological research, owing to their diverse interactions and essential roles within different organismal ecosystems. Microorganisms, such as bacteria, archaea, and viruses, have profound impact on host health, influencing digestion, metabolism, immune function, tissue development, and behavior. This study investigates the microbiome diversity and function of Kellet’s whelk (Kelletia kelletii) perivitelline fluid (PVF), which sustains thousands of developingK. kelletiiembryos within a polysaccharide and protein matrix. Our core microbiome analysis reveals a diverse range of bacteria, with theRoseobactergenus being the most abundant. Additionally, genes related to host-microbe interactions, symbiosis, and quorum sensing were detected, indicating a potential symbiotic relationship between the microbiome and Kellet’s whelk embryos. Furthermore, the microbiome exhibits gene expression related to antibiotic biosynthesis, suggesting a defensive role against pathogenic bacteria and potential discovery of novel antibiotics. Overall, this study sheds light on the microbiome’s role in Kellet’s whelk development, emphasizing the significance of host-microbe interactions in vulnerable life history stages. To our knowledge, ours is the first study to use 16S sequencing coupled with RNA sequencing (RNA-seq) to profile the microbiome of an invertebrate PVF.

    IMPORTANCE

    This study provides novel insight to an encapsulated system with strong evidence of symbiosis between the microbial inhabitants and developing host embryos. The Kellet’s whelk perivitelline fluid (PVF) contains microbial organisms of interest that may be providing symbiotic functions and potential antimicrobial properties during this vulnerable life history stage. This study, the first to utilize a comprehensive approach to investigating Kellet’s whelk PVF microbiome, couples 16S rRNA gene long-read sequencing with RNA-seq. This research contributes to and expands our knowledge on the roles of beneficial host-associated microbes.

     
    more » « less
    Free, publicly-accessible full text available March 5, 2025
  2. Abstract

    Introduced and invasive species make excellent natural experiments for investigating rapid evolution. Here, we describe the effects of genetic drift and rapid genetic adaptation in pink salmon (Oncorhynchus gorbuscha) that were accidentally introduced to the Great Lakes via a single introduction event 31 generations ago. Using whole‐genome resequencing for 134 fish spanning five sample groups across the native and introduced range, we estimate that the source population's effective population size was 146,886 at the time of introduction, whereas the founding population's effective population size was just 72—a 2040‐fold decrease. As expected with a severe founder event, we show reductions in genome‐wide measures of genetic diversity, specifically a 37.7% reduction in the number of SNPs and an 8.2% reduction in observed heterozygosity. Despite this decline in genetic diversity, we provide evidence for putative selection at 47 loci across multiple chromosomes in the introduced populations, including missense variants in genes associated with circadian rhythm, immunological response and maturation, which match expected or known phenotypic changes in the Great Lakes. For one of these genes, we use a species‐specific agent‐based model to rule out genetic drift and conclude our results support a strong response to selection occurring in a period gene (per2) that plays a predominant role in determining an organism's daily clock, matching large day length differences experienced by introduced salmon during important phenological periods. Together, these results inform how populations might evolve rapidly to new environments, even with a small pool of standing genetic variation.

     
    more » « less
  3. Abstract

    From genes to communities, understanding how diversity is maintained remains a fundamental question in biology. One challenging to identify, yet potentially ubiquitous, mechanism for the maintenance of diversity is negative frequency dependent selection (NFDS), which occurs when entities (e.g., genotypes, life history strategies, species) experience a per capita reduction in fitness with increases in relative abundance. Because NFDS allows rare entities to increase in frequency while preventing abundant entities from excluding others, we posit that negative frequency dependent selection plays a central role in the maintenance of diversity. In this review, we relate NFDS to coexistence, identify mechanisms of NFDS (e.g., mutualism, predation, parasitism), review strategies for identifying NFDS, and distinguish NFDS from other mechanisms of coexistence (e.g., storage effects, fluctuating selection). We also emphasize that NFDS is a key place where ecology and evolution intersect. Specifically, there are many examples of frequency dependent processes in ecology, but fewer cases that link this process to selection. Similarly, there are many examples of selection in evolution, but fewer cases that link changes in trait values to negative frequency dependence. Bridging these two well‐developed fields of ecology and evolution will allow for mechanistic insights into the maintenance of diversity at multiple levels.

     
    more » « less
  4. Abstract

    How to identify the drivers of population connectivity remains a fundamental question in ecology and evolution. Answering this question can be challenging in aquatic environments where dynamic lake and ocean currents coupled with high levels of dispersal and gene flow can decrease the utility of modern population genetic tools. To address this challenge, we used RAD‐Seq to genotype 959 yellow perch (Perca flavescens), a species with an ~40‐day pelagic larval duration (PLD), collected from 20 sites circumscribing Lake Michigan. We also developed a novel, integrative approach that couples detailed biophysical models with eco‐genetic agent‐based models to generate “predictive” values of genetic differentiation. By comparing predictive and empirical values of genetic differentiation, we estimated the relative contributions for known drivers of population connectivity (e.g., currents, behavior, PLD). For the main basin populations (i.e., the largest contiguous portion of the lake), we found that high gene flow led to low overall levels of genetic differentiation among populations (FST = 0.003). By far the best predictors of genetic differentiation were connectivity matrices that were derived from periods of time when there were strong and highly dispersive currents. Thus, these highly dispersive currents are driving the patterns of population connectivity in the main basin. We also found that populations from the northern and southern main basin are slightly divergent from one another, while those from Green Bay and the main basin are highly divergent (FST = 0.11). By integrating biophysical and eco‐genetic models with genome‐wide data, we illustrate that the drivers of population connectivity can be identified in high gene flow systems.

     
    more » « less
  5. Understanding the genomic characteristics of non-model organisms can bridge research gaps between ecology and evolution. However, the lack of a reference genome and transcriptome for these species makes their study challenging. Here, we complete the first full genome and transcriptome sequence assembly of the non-model organism Kellet’s whelk,Kelletia kelletii, a marine gastropod exhibiting a poleward range expansion coincident with climate change. We used a combination of Oxford Nanopore Technologies, PacBio, and Illumina sequencing platforms and integrated a set of bioinformatic pipelines to create the most complete and contiguous genome documented among the Buccinoidea superfamily to date. Genome validation revealed relatively high completeness with low missing metazoan Benchmarking Universal Single-Copy Orthologs (BUSCO) and an average coverage of ∼70x for all contigs. Genome annotation identified a large number of protein-coding genes similar to some other closely related species, suggesting the presence of a complex genome structure. Transcriptome assembly and analysis of individuals during their period of peak embryonic development revealed highly expressed genes associated with specific Gene Ontology (GO) terms and metabolic pathways, most notably lipid, carbohydrate, glycan, and phospholipid metabolism. We also identified numerous heat shock proteins (HSPs) in the transcriptome and genome that may be related to coping with thermal stress during the sessile life history stage. A robust reference genome and transcriptome for the non-model organismK. kelletiiprovide resources to enhance our understanding of its ecology and evolution and potential mechanisms of range expansion for marine species facing environmental changes.

     
    more » « less
    Free, publicly-accessible full text available December 5, 2024
  6. Next-generation sequencing technologies, such as Nanopore MinION, Illumina Hiseq and Novaseq, and PacBio Sequel II, hold immense potential for advancing genomic research on non-model organisms, including the vast majority of marine species. However, application of these technologies to marine invertebrate species is often impeded by challenges in extracting and purifying their genomic DNA due to high polysaccharide content and other secondary metabolites. In this study, we help resolve this issue by developing and testing DNA extraction protocols for Kellet’s whelk (Kelletia kelletii), a subtidal gastropod with ecological and commercial importance, by comparing four DNA extraction methods commonly used in marine invertebrate studies. In our comparison of extraction methods, the Salting Out protocol was the least expensive, produced the highest DNA yields, produced consistent high DNA quality, and had low toxicity. We validated the protocol using an independent set of tissue samples, then applied it to extract high-molecular-weight (HMW) DNA from over three thousand Kellet’s whelk tissue samples. The protocol demonstrated scalability and, with added clean-up, suitability for RAD-seq, GT-seq, as well as whole genome sequencing using both long read (ONT MinION) and short read (Illumina NovaSeq) sequencing platforms. Our findings offer a robust and versatile DNA extraction and clean-up protocol for supporting genomic research on non-model marine organisms, to help mediate the under-representation of invertebrates in genomic studies.

     
    more » « less
  7. Environmentally covarying local adaptation is a form of cryptic local adaptation in which the covariance of the genetic and environmental effects on a phenotype obscures the divergence between locally adapted genotypes. Here, we systematically document the magnitude and drivers of the genetic effect (V G ) for two forms of environmentally covarying local adaptation: counter- and cogradient variation. Using a hierarchical Bayesian meta-analysis, we calculated the overall effect size of V G as 1.05 and 2.13 for populations exhibiting countergradient or cogradient variation, respectively. These results indicate that the genetic contribution to phenotypic variation represents a 1.05 to 2.13 s.d. change in trait value between the most disparate populations depending on if populations are expressing counter- or cogradient variation. We also found that while there was substantial variance among abiotic and biotic covariates, the covariates with the largest mean effects were temperature (2.41) and gamete size (2.81). Our results demonstrate the pervasiveness and large genetic effects underlying environmentally covarying local adaptation in wild populations and highlight the importance of accounting for these effects in future studies. 
    more » « less