skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1925539

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This article reports the coexistence of hardening and softening phenomena when polyurea is submitted to repeated nano‐impacts with various impact forces while controlling the strain rate. The manifestation of these phenomena is further elucidated by interrogating ultraviolet irradiated samples under ambient and nitrogen atmospheres, wherein artificial weathering accelerates hardening by reducing the nano‐impact depths as a function of exposure duration while increasing the impact load, nano‐impact repetitions and strain rate sensitivity favored softening. A 21% and 48% increase in indentation depth are recorded after 100 repetitions at a relatively higher force (10 mN) at a low strain rate and low force (2.5 mN) at a relatively higher rate for pristine and weathered polyurea, respectively. Electron microscopy evidences the induced, progressive damage at the nanoscale based on the agglomeration of hard segments, reduced free volume, and weathering‐induced surface embrittlement. 
    more » « less
  2. Abstract Elastomers with segmental microstructure are a fascinating class of shock‐tolerant and impact‐resistant materials. However, their technological potential remains untapped due to a vague understanding of the molecular contributions to their superior mechanical behavior. Herein, in situ light‐matter interactions, to reveal the extent of microstructural mobility by temporally exploiting molecular processes during creep response, are leveraged. The segmental microstructure comprises aromatic hard domains embedded within an aliphatic soft matrix. High‐resolution digital image correlation reveals the development of strain striations, mild anisotropy, and the mechanisms responsible for domain mobility, where the rate of hard segment mobility is found to be 60% slower than that of the soft segment. Terahertz spectral analyses pinpoint the contributions of interchain hydrogen bonding of the hard segments and their significant conformational changes by observing spectral features at ≈1.2THz and ≈1.67THz. Moreover, the domain mobility is examined using experimental and computational light scattering approaches, uncovering dynamic scattering and elucidating the difference in the complex refractive index of the soft and hard segments. The study unlocks the pathway for quantitative measurements of elusive molecular mobility and conformational changes during mechanical loading and sheds light on the origin of the shock tolerance in some elastomeric polymers with segmental microstructure. 
    more » « less
  3. Abstract The core of this research is separated into three domains, the ultrahigh strain rate response of elastomeric polymers, laser‐induced shock waves , and terahertz time‐domain spectroscopy (THz‐TDS). Elastomers, e.g., polyurea, constitute an advance class of materials suitable for many applications, specifically in high impact loading scenarios, thus, a laser‐induced shock wave (LSW) experimental technique is used to investigate the mechanical response of shock‐loaded polyurea. LSW can submit samples to a strain rate exceeding 106s−1at low strains, enabling determination of material intrinsic failure modes. The large deformation induced during shock loading may alter the macromolecule structure, which can only be detected spectroscopically. Therefore, this research incorporated terahertz bulk spectroscopy to detect and report molecular conformational changes. Microscopy techniques were also used to elucidate changes in the microscale properties, morphology, and topography. The interpretation of the results explicated brittle failure in terms of partial and total spallation and, remarkably, ductile failure leading to plastic deformation, including plastic bulging and adiabatic shearing, not previously associated with LSW technique. Furthermore, spectral changes found in the terahertz regime substantiated the validity of terahertz spectroscopy in elucidating the underlying mechanism associated with the impact mitigating properties of dynamically loaded polyurea. 
    more » « less
  4. Abstract The residual effect of thermally and mechanically loaded polyurea samples was investigated in this study using terahertz time-domain spectroscopy (THz-TDS). Samples of different thicknesses were submerged in liquid nitrogen and allowed to reach cryogenic isothermal conditions while another set of samples were extracted from quasi-statically loaded strips. All samples were interrogated using THz-TDS since terahertz waves exhibit non-ionizing, nondestructive interactions with polymers. The time-domain terahertz signals were used to extract the optical and electrical properties as a function of sample thickness and loading conditions. The residual effect was prominent in the mechanically loaded samples compared to a nearly negligible presence in thermally loaded polyurea. On average, the results of the thermally loaded samples were subtle when compared to the virgin samples, whereas samples that were mechanically stretched showed a considerable difference in the characteristics of the time-domain signals. For example, the peak amplitude in the time-domain signal of the stretched thick sample showed a 9% difference from that of the virgin sample, whereas the thermally loaded sample saw only a 4.9% difference. Spectral analysis reported the frequency-dependent, complex refractive index of virgin and loaded polyurea as a function of thickness and spectral peaks associated with fundamental vibrational modes of the polyurea structure. The disappearance of three spectral peaks, 0.56 THz, 0.76 THz, and 0.95 THz, elucidated the residual effect of the mechanically loaded samples. In general, terahertz spectroscopy was shown to be a promising tool for future in situ and in operando investigations of field-dependent polymer responses. 
    more » « less