skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1925741

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In machine learning research, it is common to evaluate algorithms via their performance on standard benchmark datasets. While a growing body of work establishes guidelines for—and levies criticisms at—data and benchmarking practices in machine learning, comparatively less attention has been paid to the data repositories where these datasets are stored, documented, and shared. In this paper, we analyze the landscape of these benchmark data repositories and the role they can play in improving benchmarking. This role includes addressing issues with both datasets themselves (e.g., representational harms, construct validity) and the manner in which evaluation is carried out using such datasets (e.g., overemphasis on a few datasets and metrics, lack of reproducibility). To this end, we identify and discuss a set of considerations surrounding the design and use of benchmark data repositories, with a focus on improving benchmarking practices in machine learning. 
    more » « less
    Free, publicly-accessible full text available June 5, 2026
  2. *Uncertainty expressions* such as ‘probably’ or ‘highly unlikely’ are pervasive in human language. While prior work has established that there is population-level agreement in terms of how humans quantitatively interpret these expressions, there has been little inquiry into the abilities of language models in the same context. In this paper, we investigate how language models map linguistic expressions of uncertainty to numerical responses. Our approach assesses whether language models can employ theory of mind in this setting: understanding the uncertainty of another agent about a particular statement, independently of the model’s own certainty about that statement. We find that 7 out of 10 models are able to map uncertainty expressions to probabilistic responses in a human-like manner. However, we observe systematically different behavior depending on whether a statement is actually true or false. This sensitivity indicates that language models are substantially more susceptible to bias based on their prior knowledge (as compared to humans). These findings raise important questions and have broad implications for human-AI and AI-AI communication. 
    more » « less
  3. We expose the statistical foundations of deep learning with the goal of facilitating conversation between the deep learning and statistics communities. We highlight core themes at the intersection; summarize key neural models, such as feedforward neural networks, sequential neural networks, and neural latent variable models; and link these ideas to their roots in probability and statistics. We also highlight research directions in deep learning where there are opportunities for statistical contributions. 
    more » « less