skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Perceptions of Linguistic Uncertainty by Language Models and Humans
*Uncertainty expressions* such as ‘probably’ or ‘highly unlikely’ are pervasive in human language. While prior work has established that there is population-level agreement in terms of how humans quantitatively interpret these expressions, there has been little inquiry into the abilities of language models in the same context. In this paper, we investigate how language models map linguistic expressions of uncertainty to numerical responses. Our approach assesses whether language models can employ theory of mind in this setting: understanding the uncertainty of another agent about a particular statement, independently of the model’s own certainty about that statement. We find that 7 out of 10 models are able to map uncertainty expressions to probabilistic responses in a human-like manner. However, we observe systematically different behavior depending on whether a statement is actually true or false. This sensitivity indicates that language models are substantially more susceptible to bias based on their prior knowledge (as compared to humans). These findings raise important questions and have broad implications for human-AI and AI-AI communication.  more » « less
Award ID(s):
2046873 1925741
PAR ID:
10635515
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Association for Computational Linguistics
Date Published:
Page Range / eLocation ID:
8467 to 8502
Format(s):
Medium: X
Location:
Miami, Florida, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Human communication is increasingly intermixed with language generated by AI. Across chat, email, and social media, AI systems suggest words, complete sentences, or produce entire conversations. AI-generated language is often not identified as such but presented as language written by humans, raising concerns about novel forms of deception and manipulation. Here, we study how humans discern whether verbal self-presentations, one of the most personal and consequential forms of language, were generated by AI. In six experiments, participants (N = 4,600) were unable to detect self-presentations generated by state-of-the-art AI language models in professional, hospitality, and dating contexts. A computational analysis of language features shows that human judgments of AI-generated language are hindered by intuitive but flawed heuristics such as associating first-person pronouns, use of contractions, or family topics with human-written language. We experimentally demonstrate that these heuristics make human judgment of AI-generated language predictable and manipulable, allowing AI systems to produce text perceived as “more human than human.” We discuss solutions, such as AI accents, to reduce the deceptive potential of language generated by AI, limiting the subversion of human intuition. 
    more » « less
  2. Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AI- assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the “black-box” nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them. 
    more » « less
  3. Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AI-assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the black-box'' nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them. 
    more » « less
  4. AI language technologies increasingly assist and expand human communication. While AI-mediated communication reduces human effort, its societal consequences are poorly understood. In this study, we investigate whether using an AI writing assistant in personal self-presentation changes how people talk about themselves. In an online experiment, we asked participants (N=200) to introduce themselves to others. An AI language assistant supported their writing by suggesting sentence completions. The language model generating suggestions was fine-tuned to preferably suggest either interest, work, or hospitality topics. We evaluate how the topic preference of a language model affected users’ topic choice by analyzing the topics participants discussed in their self-presentations. Our results suggest that AI language technologies may change the topics their users talk about. We discuss the need for a careful debate and evaluation of the topic priors built into AI language technologies. 
    more » « less
  5. Educational AI (AIEd) systems are increasingly designed and evaluated with an awareness of the hybrid nature of adaptivity in real-world educational settings. In practice, beyond being a property of AIEd systems alone, adaptivity is often jointly enacted by AI systems and human facilitators (e.g., teachers or peers). Despite much recent research activity, theoretical and conceptual guidance for the design of such human–AI systems remains limited. In this paper we explore how adaptivity may be shared across AIEd systems and the various human stakeholders who work with them. Based on a comparison of prior frameworks, which tend to examine adaptivity in AIEd systems or human coaches separately, we first synthesize a set of dimensions general enough to capture human–AI hybrid adaptivity. Using these dimensions, we then present a conceptual framework to map distinct ways in which humans and AIEd systems can augment each other’s abilities. Through examples, we illustrate how this framework can be used to characterize prior work and envision new possibilities for human–AI hybrid approaches in education. 
    more » « less