skip to main content

Search for: All records

Award ID contains: 1927785

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Arctic Ocean’s Wandel Sea is the easternmost sector of the Last Ice Area, where thick, old sea ice is expected to endure longer than elsewhere. Nevertheless, in August 2020 the area experienced record-low sea ice concentration. Here we use satellite data and sea ice model experiments to determine what caused this record sea ice minimum. In our simulations there was a multi-year sea-ice thinning trend due to climate change. Natural climate variability expressed as wind-forced ice advection and subsequent melt added to this trend. In spring 2020, the Wandel Sea had a mixture of both thin and—unusual for recent years—thick ice, but this thick ice was not sufficiently widespread to prevent the summer sea ice concentration minimum. With continued thinning, more frequent low summer sea ice events are expected. We suggest that the Last Ice Area, an important refuge for ice-dependent species, is less resilient to warming than previously thought.

  2. Abstract Predictability of seasonal sea ice advance in the Chukchi Sea has been investigated in the context of ocean heat transport from the Bering Strait; however, the underlying physical processes have yet to be fully clarified. Using the Pan-Arctic Ice–Ocean Modeling and Assimilation System (PIOMAS) reanalysis product (1979–2016), we examined seasonal predictability of sea ice advance in early winter (November–December) and its source using canonical correlation analysis. It was found that 2-month leading (September–October) surface heat flux and ocean heat advection is the major predictor for interannual variability of sea ice advance. Surface heat flux is related to the atmospheric cooling process, which has influenced sea ice area in the southeastern Chukchi Sea particularly in the 1980s and 1990s. Anomalous surface heat flux is induced by strong northeasterly winds related to the east Pacific/North Pacific teleconnection pattern. Ocean heat advection, which is related to fluctuation of volume transport in the Bering Strait, leads to decrease in the sea ice area in the northwestern Chukchi Sea. Diagnostic analysis revealed that interannual variability of the Bering Strait volume transport is governed by arrested topographic waves (ATWs) forced by southeasterly wind stress along the shelf of the East Siberian Sea. The contribution ofmore »ocean heat flux to sea ice advance has increased since the 2000s; therefore, it is suggested that the major factor influencing interannual variability of sea ice advance in early winter has shifted from atmospheric cooling to ocean heat advection processes. Significance Statement Predictability of sea ice advance in the marginal Arctic seas in early winter is a crucial issue regarding future projections of the midlatitude winter climate and marine ecosystem. This study examined seasonal predictability of sea ice advance in the Chukchi Sea in early winter using a statistical technique and historical model simulation data. We identified that atmospheric cooling and ocean heat transport are the two main predictors of sea ice advance, and that the impact of the latter has become amplified since the 2000s. Our new finding suggests that the precise information on wind-driven ocean currents and temperatures is crucial for the skillful prediction of interannual variability of sea ice advance under present and future climatic regimes.« less
    Free, publicly-accessible full text available May 1, 2023
  3. Halliday, William David (Ed.)
    The Distributed Biological Observatory (DBO) was established to detect environmental changes in the Pacific Arctic by regular monitoring of biophysical responses in each of 8 DBO regions. Here we examine the occurrence of bowhead and beluga whale vocalizations in the western Beaufort Sea acquired by acoustic instruments deployed from September 2008-July 2014 and September 2016-October 2018 to examine inter-annual variability of these Arctic endemic species in DBO Region 6. Acoustic data were collected on an oceanographic mooring deployed in the Beaufort shelfbreak jet at ~71.4°N, 152.0°W. Spectrograms of acoustic data files were visually examined for the presence or absence of known signals of bowhead and beluga whales. Weekly averages of whale occurrence were compared with outputs of zooplankton, temperature and sea ice from the BIOMAS model to determine if any of these variables influenced whale occurrence. In addition, the dates of acoustic whale passage in the spring and fall were compared to annual sea ice melt-out and freeze-up dates to examine changes in phenology. Neither bowhead nor beluga whale migration times changed significantly in spring, but bowhead whales migrated significantly later in fall from 2008–2018. There were no clear relationships between bowhead whales and the environmental variables, suggesting that themore »DBO 6 region is a migratory corridor, but not a feeding hotspot, for this species. Surprisingly, beluga whale acoustic presence was related to zooplankton biomass near the mooring, but this is unlikely to be a direct relationship: there are likely interactions of environmental drivers that result in higher occurrence of both modeled zooplankton and belugas in the DBO 6 region. The environmental triggers that drive the migratory phenology of the two Arctic endemic cetacean species likely extend from Bering Sea transport of heat, nutrients and plankton through the Chukchi and into the Beaufort Sea.« less
  4. Abstract In theory, the same sea-ice models could be used for both research and operations, but in practice, differences in scientific and software requirements and computational and human resources complicate the matter. Although sea-ice modeling tools developed for climate studies and other research applications produce output of interest to operational forecast users, such as ice motion, convergence, and internal ice pressure, the relevant spatial and temporal scales may not be sufficiently resolved. For instance, sea-ice research codes are typically run with horizontal resolution of more than 3 km, while mariners need information on scales less than 300 m. Certain sea-ice processes and coupled feedbacks that are critical to simulating the Earth system may not be relevant on these scales; and therefore, the most important model upgrades for improving sea-ice predictions might be made in the atmosphere and ocean components of coupled models or in their coupling mechanisms, rather than in the sea-ice model itself. This paper discusses some of the challenges in applying sea-ice modeling tools developed for research purposes for operational forecasting on short time scales, and highlights promising new directions in sea-ice modeling.