skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accelerated sea ice loss in the Wandel Sea points to a change in the Arctic’s Last Ice Area
Abstract The Arctic Ocean’s Wandel Sea is the easternmost sector of the Last Ice Area, where thick, old sea ice is expected to endure longer than elsewhere. Nevertheless, in August 2020 the area experienced record-low sea ice concentration. Here we use satellite data and sea ice model experiments to determine what caused this record sea ice minimum. In our simulations there was a multi-year sea-ice thinning trend due to climate change. Natural climate variability expressed as wind-forced ice advection and subsequent melt added to this trend. In spring 2020, the Wandel Sea had a mixture of both thin and—unusual for recent years—thick ice, but this thick ice was not sufficiently widespread to prevent the summer sea ice concentration minimum. With continued thinning, more frequent low summer sea ice events are expected. We suggest that the Last Ice Area, an important refuge for ice-dependent species, is less resilient to warming than previously thought.  more » « less
Award ID(s):
1744587 1751363 1927785
PAR ID:
10360713
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
2
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Over recent decades Antarctic sea-ice extent has increased, alongsidewidespread ice shelf thinning and freshening of waters along the Antarcticmargin. In contrast, Earth system models generally simulate a decrease insea ice. Circulation of water masses beneath large-cavity ice shelves is notincluded in current Earth System models and may be a driver of thisphenomena. We examine a Holocene sediment core off East Antarctica thatrecords the Neoglacial transition, the last major baseline shift ofAntarctic sea ice, and part of a late-Holocene global cooling trend. Weprovide a multi-proxy record of Holocene glacial meltwater input, sedimenttransport, and sea-ice variability. Our record, supported by high-resolutionocean modelling, shows that a rapid Antarctic sea-ice increase during themid-Holocene (∼ 4.5 ka) occurred against a backdrop ofincreasing glacial meltwater input and gradual climate warming. We suggestthat mid-Holocene ice shelf cavity expansion led to cooling of surfacewaters and sea-ice growth that slowed basal ice shelf melting.Incorporating this feedback mechanism into global climate models will beimportant for future projections of Antarctic changes. 
    more » « less
  2. Abstract The Arctic Ocean has seen a remarkable reduction in sea ice coverage, thickness and age since the 1980s. These changes are most pronounced in the Beaufort Sea, with a transition around 2007 from a regime dominated by multi-year sea ice to one with large expanses of open water during the summer. Using satellite-based observations of sea ice, an atmospheric reanalysis and a coupled ice-ocean model, we show that during the summers of 2020 and 2021, the Beaufort Sea hosted anomalously large concentrations of thick and old ice. We show that ice advection contributed to these anomalies, with 2020 dominated by eastward transport from the Chukchi Sea, and 2021 dominated by transport from the Last Ice Area to the north of Canada and Greenland. Since 2007, cool season (fall, winter, and spring) ice volume transport into the Beaufort Sea accounts for ~45% of the variability in early summer ice volume—a threefold increase from that associated with conditions prior to 2007. This variability is likely to impact marine infrastructure and ecosystems. 
    more » « less
  3. Abstract On 25 February 2022 Antarctic sea ice extent dropped to a satellite‐era record low level of 1.92 × 106 km2, 0.92 × 106 km2below the long‐term mean. The area of sea ice was also at a record low level of 1.24 × 106 km2. Although no individual sector was at a record low, at the minimum there were negative sea ice anomalies in all sectors of the Southern Ocean, with the largest in the Ross (contributing 46%) and Weddell Seas (26%). The Amundsen Sea Low had a record low depth in October/November 2021, with a series of very deep depressions giving strong offshore winds. These accelerated ice loss during the melt season, creating a 1.00 × 106 km2coastal polynya in the Ross Sea. In the northern Weddell Sea, westerly winds of record strength led to ice export from the region. 
    more » « less
  4. Abstract Summer Arctic sea ice is declining rapidly but with superimposed variability on multiple time scales that introduces large uncertainties in projections of future sea ice loss. To better understand what drives at least part of this variability, we show how a simple linear model can link dominant modes of climate variability to low-frequency regional Arctic sea ice concentration (SIC) anomalies. Focusing on September, we find skillful projections from global climate models (GCMs) from phase 6 of the Coupled Model Intercomparison Project (CMIP6) at lead times of 4–20 years, with up to 60% of observed low-frequency variability explained at a 5-yr lead time. The dominant driver of low-frequency SIC variability is the interdecadal Pacific oscillation (IPO) which is positively correlated with SIC anomalies in all regions up to a lead time of 15 years but with large uncertainty between GCMs and internal variability realization. The Niño-3.4 index and Atlantic multidecadal oscillation have better agreement between GCMs of being positively and negatively related, respectively, with low-frequency SIC anomalies for at least 10-yr lead times. The large variations between GCMs and between members within large ensembles indicate the diverse simulation of teleconnections between the tropics and Arctic sea ice and the dependence on the initial climate state. Further, the influence of the Niño-3.4 index was found to be sensitive to the background climate. Our results suggest that, based on the 2022 phases of dominant climate variability modes, enhanced loss of sea ice area across the Arctic is likely during the next decade. Significance StatementThe purpose of this study is to better understand the drivers of low-frequency variability of Arctic sea ice. Teasing out the complicated relationships within the climate system takes a large number of examples. Here, we use 42 of the latest generation of global climate models to construct a simple linear model based on dominant named climate features to predict regional low-frequency sea ice anomalies at a lead time of 2–20 years. In 2022, these modes of variability happen to be in the phases most conducive to low Arctic sea ice concentration anomalies. Given the context of the longer-term trend of sea ice loss due to global warming, our results suggest accelerated Arctic sea ice loss in the next decade. 
    more » « less
  5. Abstract In recent decades, the Arctic minimum sea ice extent has transitioned from a predominantly thick multiyear ice cover to a thinner seasonal ice cover. We partition the total (observed) Arctic summer area loss into thermodynamic and dynamic (convergence, ridging, and export) sea ice area loss during the satellite era from 1979 to 2021 using a Lagrangian sea ice tracking model driven by satellite-derived sea ice velocities. Results show that the thermodynamic signal dominates the total summer ice area loss and the dynamic signal remains small (∼20%) even in 2007 when dynamic loss was largest. Sea ice loss by compaction (within pack ice convergence) dominates the dynamic area loss, even in years when the export is largest. Results from a simple (Ekman) free-drift sea ice model, supported by results from the Lagrangian model, suggest that nonlinear effects between dynamic and thermodynamic area loss can be important for large negative anomalies in sea ice extent, in accord with previous modeling studies. A detailed analysis of two all-time record minimum years (2007 and 2012)—one with a semipermanent high in the southern Beaufort Sea and the other with a short-lived but extreme storm in the Pacific sector of the Arctic in late summer—shows that compaction by Ekman convergence together with large thermodynamic melt in the marginal ice zone dominated the sea ice area loss in 2007 whereas, in 2012, it was dominated by Ekman divergence amplified by sea–ice albedo feedback—together with an early melt onset. We argue that Ekman divergence from more intense summer storms when the sun is high above the horizon is a more likely mechanism for a “first-time” ice-free Arctic. 
    more » « less