Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Comprehensive observations of surface wave anisotropy across Alaska and the Aleutian subduction zone would help to improve understanding of its tectonics, mantle dynamics, and earthquake risk. We produce such observations, using stations from the USArray Transportable Array, regional networks across Alaska, and the Alaska Amphibious Community Seismic Experiment in the Alaska‐Aleutian subduction zone both onshore and offshore. Our data include Rayleigh and Love wave phase dispersion from earthquakes (28–85 s) and ambient noise two‐ and three‐station interferometry (8–50 s). Compared with using two‐station interferometry alone, three‐station interferometry significantly improves the signal‐to‐noise ratio and approximately doubles the number of measurements retained. Average differences between both isotropic and anisotropic tomographic maps constructed from different methods lie within their uncertainties, which is justification for combining the measurements. The composite tomographic maps include Rayleigh wave isotropy and azimuthal anisotropy from 8 to 85 s both onshore and offshore, and onshore Love wave isotropy from 8 to 80 s. In the Alaska‐Aleutian subduction zone, Rayleigh wave fast directions vary from trench parallel to perpendicular and back to parallel with increasing periods, apparently reflecting the effect of the subducted Pacific Plate. The tomographic maps provide a basis for inferring the 3‐D anisotropic crustal and uppermost mantle structure across Alaska and the Aleutian subduction zone.more » « less
-
Abstract This study presents an azimuthally anisotropic shear wave velocity model of the crust and uppermost mantle beneath Alaska, based on Rayleigh wave phase speed observations from 10 to 80 s period recorded at more than 500 broadband stations. We test the hypothesis that a model composed of two homogeneous layers of anisotropy can explain these measurements. This “Two‐Layer Model” confines azimuthal anisotropy to the brittle upper crust along with the uppermost mantle from the Moho to 200 km depth. This model passes the hypothesis test for most of the region of study, from which we draw two conclusions. (a) The data are consistent with crustal azimuthal anisotropy being dominantly controlled by deformationally aligned cracks and fractures in the upper crust undergoing brittle deformation. (b) The data are also consistent with the uppermost mantle beneath Alaska and surroundings experiencing vertically coherent deformation. The model resolves several prominent features. (1) In the upper crust, fast directions are principally aligned with the orientation of major faults. (2) In the upper mantle, fast directions are aligned with the compressional direction in compressional tectonic domains and with the tensional direction in tensional domains. (3) The mantle fast directions located near the Alaska‐Aleutian subduction zone and the surrounding back‐arc area form a toroidal pattern that is consistent with mantle flow directions predicted by recent geodynamical models. Finally, the mantle anisotropy is remarkably consistent with SKS fast directions, but to fit SKS split times, anisotropy must extend below 200 km depth across most of the study region.more » « less
-
SUMMARY Traditional two-station ambient noise interferometry estimates the Green’s function between a pair of synchronously deployed seismic stations. Three-station interferometry considers records observed three stations at a time, where two of the stations are considered receiver–stations and the third is a source–station. Cross-correlations between records at the source–station with each of the receiver–stations are correlated or convolved again to estimate the Green’s function between the receiver–stations, which may be deployed asynchronously. We use data from the EarthScope USArray in the western United States to compare Rayleigh wave dispersion obtained from two-station and three-station interferometry. Three three-station interferometric methods are distinguished by the data segment utilized (coda-wave or direct-wave) and whether the source–stations are constrained to lie in stationary phase zones approximately inline with the receiver–stations. The primary finding is that the three-station direct wave methods perform considerably better than the three-station coda-wave method and two-station ambient noise interferometry for obtaining surface wave dispersion measurements in terms of signal-to-noise ratio, bandwidth, and the number of measurements obtained, but possess small biases relative to two-station interferometry. We present a ray-theoretic correction method that largely removes the bias below 40 s period and reduces it at longer periods. Three-station direct-wave interferometry provides substantial value for imaging the crust and uppermost mantle, and its ability to bridge asynchronously deployed stations may impact the design of seismic networks in the future.more » « less
An official website of the United States government
