skip to main content


Search for: All records

Award ID contains: 1928614

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Pairwise interactions are critical to collective dynamics of natural and technological systems. Information theory is the gold standard to study these interactions, but recent work has identified pitfalls in the way information flow is appraised through classical metrics—time-delayed mutual information and transfer entropy. These pitfalls have prompted the introduction of intrinsic mutual information to precisely measure information flow. However, little is known regarding the potential use of intrinsic mutual information in the inference of directional influences to diagnose interactions from time-series of individual units. We explore this possibility within a minimalistic, mathematically tractable leader–follower model, for which we document an excess of false inferences of intrinsic mutual information compared to transfer entropy. This unexpected finding is linked to a fundamental limitation of intrinsic mutual information, which suffers from the same sins of time-delayed mutual information: a thin tail of the null distribution that favors the rejection of the null-hypothesis of independence.

     
    more » « less
  2. Importance The marketing of health care devices enabled for use with artificial intelligence (AI) or machine learning (ML) is regulated in the US by the US Food and Drug Administration (FDA), which is responsible for approving and regulating medical devices. Currently, there are no uniform guidelines set by the FDA to regulate AI- or ML-enabled medical devices, and discrepancies between FDA-approved indications for use and device marketing require articulation. Objective To explore any discrepancy between marketing and 510(k) clearance of AI- or ML-enabled medical devices. Evidence Review This systematic review was a manually conducted survey of 510(k) approval summaries and accompanying marketing materials of devices approved between November 2021 and March 2022, conducted between March and November 2022, following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Analysis focused on the prevalence of discrepancies between marketing and certification material for AI/ML enabled medical devices. Findings A total of 119 FDA 510(k) clearance summaries were analyzed in tandem with their respective marketing materials. The devices were taxonomized into 3 individual categories of adherent, contentious, and discrepant devices. A total of 15 devices (12.61%) were considered discrepant, 8 devices (6.72%) were considered contentious, and 96 devices (84.03%) were consistent between marketing and FDA 510(k) clearance summaries. Most devices were from the radiological approval committees (75 devices [82.35%]), with 62 of these devices (82.67%) adherent, 3 (4.00%) contentious, and 10 (13.33%) discrepant; followed by the cardiovascular device approval committee (23 devices [19.33%]), with 19 of these devices (82.61%) considered adherent, 2 contentious (8.70%) and 2 discrepant (8.70%). The difference between these 3 categories in cardiovascular and radiological devices was statistically significant ( P  < .001). Conclusions and Relevance In this systematic review, low adherence rates within committees were observed most often in committees with few AI- or ML-enabled devices. and discrepancies between clearance documentation and marketing material were present in one-fifth of devices surveyed. 
    more » « less
    Free, publicly-accessible full text available July 3, 2024
  3. Nakayama, Luis Filipe (Ed.)
    Visual impairment represents a significant health and economic burden affecting 596 million globally. The incidence of visual impairment is expected to double by 2050 as our population ages. Independent navigation is challenging for persons with visual impairment, as they often rely on non-visual sensory signals to find the optimal route. In this context, electronic travel aids are promising solutions that can be used for obstacle detection and/or route guidance. However, electronic travel aids have limitations such as low uptake and limited training that restrict their widespread use. Here, we present a virtual reality platform for testing, refining, and training with electronic travel aids. We demonstrate the viability on an electronic travel aid developed in-house, consist of a wearable haptic feedback device. We designed an experiment in which participants donned the electronic travel aid and performed a virtual task while experiencing a simulation of three different visual impairments: age-related macular degeneration, diabetic retinopathy, and glaucoma. Our experiments indicate that our electronic travel aid significantly improves the completion time for all the three visual impairments and reduces the number of collisions for diabetic retinopathy and glaucoma. Overall, the combination of virtual reality and electronic travel aid may have a beneficial role on mobility rehabilitation of persons with visual impairment, by allowing early-phase testing of electronic travel aid prototypes in safe, realistic, and controllable settings. 
    more » « less
    Free, publicly-accessible full text available June 20, 2024
  4. Abstract Increasingly, laws are being proposed and passed by governments around the world to regulate artificial intelligence (AI) systems implemented into the public and private sectors. Many of these regulations address the transparency of AI systems, and related citizen-aware issues like allowing individuals to have the right to an explanation about how an AI system makes a decision that impacts them. Yet, almost all AI governance documents to date have a significant drawback: they have focused on what to do (or what not to do) with respect to making AI systems transparent, but have left the brunt of the work to technologists to figure out how to build transparent systems. We fill this gap by proposing a stakeholder-first approach that assists technologists in designing transparent, regulatory-compliant systems. We also describe a real-world case study that illustrates how this approach can be used in practice. 
    more » « less
  5. Background Chatbots are being piloted to draft responses to patient questions, but patients’ ability to distinguish between provider and chatbot responses and patients’ trust in chatbots’ functions are not well established. Objective This study aimed to assess the feasibility of using ChatGPT (Chat Generative Pre-trained Transformer) or a similar artificial intelligence–based chatbot for patient-provider communication. Methods A survey study was conducted in January 2023. Ten representative, nonadministrative patient-provider interactions were extracted from the electronic health record. Patients’ questions were entered into ChatGPT with a request for the chatbot to respond using approximately the same word count as the human provider’s response. In the survey, each patient question was followed by a provider- or ChatGPT-generated response. Participants were informed that 5 responses were provider generated and 5 were chatbot generated. Participants were asked—and incentivized financially—to correctly identify the response source. Participants were also asked about their trust in chatbots’ functions in patient-provider communication, using a Likert scale from 1-5. Results A US-representative sample of 430 study participants aged 18 and older were recruited on Prolific, a crowdsourcing platform for academic studies. In all, 426 participants filled out the full survey. After removing participants who spent less than 3 minutes on the survey, 392 respondents remained. Overall, 53.3% (209/392) of respondents analyzed were women, and the average age was 47.1 (range 18-91) years. The correct classification of responses ranged between 49% (192/392) to 85.7% (336/392) for different questions. On average, chatbot responses were identified correctly in 65.5% (1284/1960) of the cases, and human provider responses were identified correctly in 65.1% (1276/1960) of the cases. On average, responses toward patients’ trust in chatbots’ functions were weakly positive (mean Likert score 3.4 out of 5), with lower trust as the health-related complexity of the task in the questions increased. Conclusions ChatGPT responses to patient questions were weakly distinguishable from provider responses. Laypeople appear to trust the use of chatbots to answer lower-risk health questions. It is important to continue studying patient-chatbot interaction as chatbots move from administrative to more clinical roles in health care. 
    more » « less
  6. Background Remote patient monitoring (RPM) technologies can support patients living with chronic conditions through self-monitoring of physiological measures and enhance clinicians’ diagnostic and treatment decisions. However, to date, large-scale pragmatic RPM implementation within health systems has been limited, and understanding of the impacts of RPM technologies on clinical workflows and care experience is lacking. Objective In this study, we evaluate the early implementation of operational RPM initiatives for chronic disease management within the ambulatory network of an academic medical center in New York City, focusing on the experiences of “early adopter” clinicians and patients. Methods Using a multimethod qualitative approach, we conducted (1) interviews with 13 clinicians across 9 specialties considered as early adopters and supporters of RPM and (2) speculative design sessions exploring the future of RPM in clinical care with 21 patients and patient representatives, to better understand experiences, preferences, and expectations of pragmatic RPM use for health care delivery. Results We identified themes relevant to RPM implementation within the following areas: (1) data collection and practices, including impacts of taking real-world measures and issues of data sharing, security, and privacy; (2) proactive and preventive care, including proactive and preventive monitoring, and proactive interventions and support; and (3) health disparities and equity, including tailored and flexible care and implicit bias. We also identified evidence for mitigation and support to address challenges in each of these areas. Conclusions This study highlights the unique contexts, perceptions, and challenges regarding the deployment of RPM in clinical practice, including its potential implications for clinical workflows and work experiences. Based on these findings, we offer implementation and design recommendations for health systems interested in deploying RPM-enabled health care. 
    more » « less
  7. This paper investigates the tools and practices used by Orientation and Mobility (O&M) specialists in instructing people who are blind or have low vision in concepts, skills, and techniques for safe and independent travel. Based on interviews with experienced instructors who practice in different O&M settings we find that a shortage of qualified specialists and restrictions on in-person activities during COVID-19 has accelerated interest in remote instruction and assessment, while widespread adoption of smartphones with accessibility support has driven interest in assistive apps. This presents both opportunities and challenges for a practice that is traditionally conducted in-person and assessed through qualitative observations. In response we identify multiple opportunities for HCI research in service of O&M, including: supporting a 'physician's assistant' model of remote O&M instruction and assessment, matching O&M instructors' clients with guide dogs, highlighting clients' progress towards O&M goals, and collaboratively planning routes and monitoring clients' independent travel progress. 
    more » « less
  8. Vision-based localization approaches now underpin newly emerging navigation pipelines for myriad use cases, from robotics to assistive technologies. Compared to sensor-based solutions, vision-based localization does not require pre-installed sensor infrastructure, which is costly, time-consuming, and/or often infeasible at scale. Herein, we propose a novel vision-based localization pipeline for a specific use case: navigation support for end users with blindness and low vision. Given a query image taken by an end user on a mobile application, the pipeline leverages a visual place recognition (VPR) algorithm to find similar images in a reference image database of the target space. The geolocations of these similar images are utilized in a downstream task that employs a weighted-average method to estimate the end user’s location. Another downstream task utilizes the perspective-n-point (PnP) algorithm to estimate the end user’s direction by exploiting the 2D–3D point correspondences between the query image and the 3D environment, as extracted from matched images in the database. Additionally, this system implements Dijkstra’s algorithm to calculate a shortest path based on a navigable map that includes the trip origin and destination. The topometric map used for localization and navigation is built using a customized graphical user interface that projects a 3D reconstructed sparse map, built from a sequence of images, to the corresponding a priori 2D floor plan. Sequential images used for map construction can be collected in a pre-mapping step or scavenged through public databases/citizen science. The end-to-end system can be installed on any internet-accessible device with a camera that hosts a custom mobile application. For evaluation purposes, mapping and localization were tested in a complex hospital environment. The evaluation results demonstrate that our system can achieve localization with an average error of less than 1 m without knowledge of the camera’s intrinsic parameters, such as focal length. 
    more » « less