skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1928695

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the realm of virtual reality (VR) research, the synergy of methodological advancements, technical innovation, and novel applications is paramount. Our work encapsulates these facets in the context of spatial ability assessments conducted within a VR environment. This paper presents a comprehensive and integrated framework of VR, eye-tracking, and electroencephalography (EEG), which seamlessly combines measuring participants’ behavioral performance and simultaneously collecting time-stamped eye tracking and EEG data to enable understanding how spatial ability is impacted in certain conditions and if such conditions demand increased attention and mental allocation. This framework encompasses the measurement of participants’ gaze pattern (e.g., fixation and saccades), EEG data (e.g., Alpha, Beta, Gamma, and Theta wave patterns), and psychometric and behavioral test performance. On the technical front, we utilized the Unity 3D game engine as the core for running our spatial ability tasks by simulating altered conditions of space exploration. We simulated two types of space exploration conditions: (1) microgravity condition in which participants’ idiotropic (body) axis is in statically and dynamically misaligned with their visual axis; and (2) conditions of Martian terrain that offers a visual frame of reference (FOR) but with limited and unfamiliar landmarks objects. We specifically targeted assessing human spatial ability and spatial perception. To assess spatial ability, we digitalized behavioral tests of Purdue Spatial Visualization Test: Rotations (PSVT: R), the Mental Cutting Test (MCT), and the Perspective Taking Ability (PTA) test and integrated them into the VR settings to evaluate participants’ spatial visualization, spatial relations, and spatial orientation ability, respectively. For spatial perception, we applied digitalized versions of size and distance perception tests to measure participants’ subjective perception of size and distance. A suite of C# scripts orchestrated the VR experience, enabling real-time data collection and synchronization. This technical innovation includes the integration of data streams from diverse sources, such as VIVE controllers, eye-tracking devices, and EEG hardware, to ensure a cohesive and comprehensive dataset. A pivotal challenge in our research was synchronizing data from EEG, eye tracking, and VR tasks to facilitate comprehensive analysis. To address this challenge, we employed the Unity interface of the OpenSync library, a tool designed to unify disparate data sources in the fields of psychology and neuroscience. This approach ensures that all collected measures share a common time reference, enabling meaningful analysis of participant performance, gaze behavior, and EEG activity. The Unity-based system seamlessly incorporates task parameters, participant data, and VIVE controller inputs, providing a versatile platform for conducting assessments in diverse domains. Finally, we were able to collect synchronized measurements of participants’ scores on the behavioral tests of spatial ability and spatial perception, their gaze data and EEG data. In this paper, we present the whole process of combining the eye-tracking and EEG workflows into the VR settings and collecting relevant measurements. We believe that our work not only advances the state-of-the-art in spatial ability assessments but also underscores the potential of virtual reality as a versatile tool in cognitive research, therapy, and rehabilitation. 
    more » « less
  2. Spatial ability is the ability to generate, store, retrieve, and transform visual information to mentally represent a space and make sense of it. This ability is a critical facet of human cognition that affects knowledge acquisition, productivity, and workplace safety. Although having improved spatial ability is essential for safely navigating and perceiving a space on earth, it is more critical in altered environments of other planets and deep space, which may pose extreme and unfamiliar visuospatial conditions. Such conditions may range from microgravity settings with the misalignment of body and visual axes to a lack of landmark objects that offer spatial cues to perceive size, distance, and speed. These altered visuospatial conditions may pose challenges to human spatial cognitive processing, which assists humans in locating objects in space, perceiving them visually, and comprehending spatial relationships between the objects and surroundings. The main goal of this paper is to examine if eye-tracking data of gaze pattern can indicate whether such altered conditions may demand more mental efforts and attention. The key dimensions of spatial ability (i.e., spatial visualization, spatial relations, and spatial orientation) are examined under the three simulated conditions: (1) aligned body and visual axes (control group); (2) statically misaligned body and visual axes (experiment group I); and dynamically misaligned body and visual axes (experiment group II). The three conditions were simulated in Virtual Reality (VR) using Unity 3D game engine. Participants were recruited from Texas A&M University student population who wore HTC VIVE Head-Mounted Displays (HMDs) equipped with eye-tracking technology to work on three spatial tests to measure spatial visualization, orientation, and relations. The Purdue Spatial Visualization Test: Rotations (PSVT: R), the Mental Cutting Test (MCT), and the Perspective Taking Ability (PTA) test were used to evaluate the spatial visualization, spatial relations, and spatial orientation of 78 participants, respectively. For each test, gaze data was collected through Tobii eye-tracker integrated in the HTC Vive HMDs. Quick eye movements, known as saccades, were identified by analyzing raw eye-tracking data using the rate of change of gaze position over time as a measure of mental effort. The results showed that the mean number of saccades in MCT and PSVT: R tests was statistically larger in experiment group II than in the control group or experiment group I. However, PTA test data did not meet the required assumptions to compare the mean number of saccades in the three groups. The results suggest that spatial relations and visualization may require more mental effort under dynamically misaligned idiotropic and visual axes than aligned or statically misaligned idiotropic and visual axes. However, the data could not reveal whether spatial orientation requires more/less mental effort under aligned, statically misaligned, and dynamically misaligned idiotropic and visual axes. The results of this study are important to understand how altered visuospatial conditions impact spatial cognition and how simulation- or game-based training tools can be developed to train people in adapting to extreme or altered work environments and working more productively and safely. 
    more » « less
  3. chmorrow, D.D.; Fidopiastis, C.M. (Ed.)
    This paper presents the results of a study investigating the impact of misaligned idiotropic and visual axes on spatial ability in a simulated microgravity environment in virtual reality. The study involved 99 participants who completed two spatial tests, the Purdue Spatial Visualization Test: Rotations and the Perspective Taking Ability test, in three different scenarios: control (axes aligned), static misalignment, and dynamic misalignment. The results showed that dynamic misalignment significantly impacted mental rotation and spatial visualization performance, but not spatial orientation ability. Additionally, the gaming experience did not moderate mental rotation outcomes but did enhance spatial orientation ability. These findings provide insight into how altered visuospatial conditions may affect human spatial cognition and can inform the development of simulation-based training tools to help people adapt to such environments more effectively. Furthermore, the study highlights the potential of using games as a learning tool to improve productivity and safety in extreme or altered work environments. 
    more » « less
  4. Emerging technologies offer the potential to expand the domain of the future workforce to extreme environments, such as outer space and alien terrains. To understand how humans navigate in such environments that lack familiar spatial cues this study examined spatial perception in three types of environments. The environments were simulated using virtual reality. We examined participants’ ability to estimate the size and distance of stimuli under conditions of minimal, moderate, or maximum visual cues, corresponding to an environment simulating outer space, an alien terrain, or a typical cityscape, respectively. The findings show underestimation of distance in both the maximum and the minimum visual cue environment but a tendency for overestimation of distance in the moderate environment. We further observed that depth estimation was substantially better in the minimum environment than in the other two environments. However, estimation of height was more accurate in the environment with maximum cues (cityscape) than the environment with minimum cues (outer space). More generally, our results suggest that familiar visual cues facilitated better estimation of size and distance than unfamiliar cues. In fact, the presence of unfamiliar, and perhaps misleading visual cues (characterizing the alien terrain environment), was more disruptive than an environment with a total absence of visual cues for distance and size perception. The findings have implications for training workers to better adapt to extreme environments. 
    more » « less
  5. null (Ed.)
    The purpose of this study is to understand how spatial ability differs under extreme environments and to provide implications on individually relevant training approaches by using VR technologies. Special jobs under extreme conditions (e.g., astronaut or scuba diver) demand higher spatial ability and effective spatial strategy. This paper examines how the conflicts between visual vertical and the body vertical may affect spatial ability. In addition, the study tested the relationship between an individual’s tendency to adopt a certain spatial strategy (egocentric vs. allocentric) and their use of a particular spatial reference frame (body vs. visual) under the extreme condition. 
    more » « less