skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1929514

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT AimStudies assessing large‐scale patterns of microbial diversity have predominantly focused on free‐living microorganisms, often failing to link observed patterns to established theories regarding the maintenance of global diversity patterns. We aimed to determine whether foliar fungi on two closely related grass hosts—Heteropogon contortusandThemeda triandra—display a commonly observed latitudinal gradient in species richness and determine whether host identity, energy (temperature and precipitation), climate seasonality, fire frequency and grass evolutionary history drive the observed patterns in species richness and composition. LocationPaleotropical. Time PeriodContemporary. Major Taxa StudiedFoliar fungi. MethodsFoliar fungal diversity was quantified from 201 leaf samples ofT. triandraandH. contortuscollected across the distributional range of these species. Mixed effects models were used to quantify patterns of diversity and their correlates among and within continents. Ordinations were used to assess drivers of composition. ResultsFoliar fungi displayed consistent latitudinal diversity gradients in richness. Energy was a strong driver of richness at inter‐continental and continental scales, while other factors had inconsistent impacts on richness among scales, hosts and guilds. Globally, richness was higher in regions of higher growing season temperatures and where hosts were present for longer periods. Composition was primarily structured by geographic region at the global scale, indicating that distance was a dominant driver of community composition. Within Australia, temperature and rainfall seasonality and the amount of growing season rainfall, were the dominant drivers of both richness and composition. Main ConclusionsWe find some support for the idea that foliar fungal species diversity is governed by the same factors as many macro‐organisms (energy availability and evolutionary history) at inter‐continental scales, but also that fungal diversity and composition in the highly seasonal continent of Australia were driven by factors that shape tropical grassy ecosystems, namely climate seasonality and fire. 
    more » « less
  2. Abstract Polyploidy (genome duplication) is a pivotal force in evolution. However, the interactions between parental genomes in a polyploid nucleus, frequently involving subgenome dominance, are poorly understood. Here we showcase analyses of a bamboo system (Poaceae: Bambusoideae) comprising a series of lineages from diploid (herbaceous) to tetraploid and hexaploid (woody), with 11 chromosome-level de novo genome assemblies and 476 transcriptome samples. We find that woody bamboo subgenomes exhibit stunning karyotype stability, with parallel subgenome dominance in the two tetraploid clades and a gradual shift of dominance in the hexaploid clade. Allopolyploidization and subgenome dominance have shaped the evolution of tree-like lignified culms, rapid growth and synchronous flowering characteristic of woody bamboos as large grasses. Our work provides insights into genome dominance in a remarkable polyploid system, including its dependence on genomic context and its ability to switch which subgenomes are dominant over evolutionary time. 
    more » « less
  3. Abstract Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5–7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade. 
    more » « less
  4. Three cross-incompatibility loci each control a distinct reproductive barrier in both domesticated maize (Zea mays ssp. mays) and its wild teosinte relatives. These three loci, Teosinte crossing barrier1 (Tcb1), Gametophytic factor1 (Ga1), and Ga2, each play a key role in preventing hybridization between incompatible populations and are proposed to maintain the barrier between domesticated and wild subspecies. Each locus encodes both a silk-active and a matching pollen-active pectin methylesterase (PMEs). To investigate the diversity and molecular evolution of these gametophytic factor loci, we identified existing and improved models of the responsible genes in a new genome assembly of maize line P8860 that contains active versions of all three loci. We then examined fifty-two assembled genomes from seventeen species to classify haplotype diversity and identify sites under diversifying selection during the evolution of these genes. We show that Ga2, the oldest of these three loci, was duplicated to form Ga1 at least 12 million years ago. Tcb1, the youngest locus, arose as a duplicate of Ga1 before or around the time of diversification of the Zea genus. We find evidence of positive selection during evolution of the functional genes at an active site in the pollen-expressed PME and predicted surface sites in both the silk- and pollen-expressed PMEs. The most common allele at the Ga1 locus is a conserved ga1 allele (ga1-Off), which is a specific haplotype containing three full-length PME gene copies, all of which are non-coding due to conserved stop codons and are between 610 thousand and 1.5 million years old. We show that the ga1-Off allele is associated with and likely generates 24-nt siRNAs in developing pollen-producing tissue, and these siRNAs map to functional Ga1 alleles. In previously-published crosses, the ga1-Off allele was associated with reduced function of the typically dominant functional alleles for the Ga1 and Tcb1 barriers. Taken together, this seems to be an example of a type of epigenetic trans-homolog silencing known as paramutation, functioning at a locus controlling a reproductive barrier. 
    more » « less
  5. We present a combination of laboratory experiments and computational fluid dynamics (CFD) simulations to understand the wind-induced drag force and drag coefficient for Saccharum contortum seeds. Seed drop experiments indicate that the settling fall velocities of hair-equipped seeds are within 1–2 m/s, compared to 2.34 times higher settling fall velocity of the seed without hairs. The experimental data illustrate a power-law relationship between drag coefficient (Cd) and Reynolds number (Re) under the free fall condition: Cd∼Re−1.1. CFD simulations show that both viscous and pressure drag force components are important in contributing to wind drag. The presence of hairs substantially increases pressure drag, and its relative importance depends on hair number and orientation. Seed morphology including hair number and orientation influences the drag coefficient under different flow directions relatively to the seed body. The lower drag coefficient observed with crossflow wind compared to free fall suggests that seeds encounter less air resistance while drifting horizontally in the wind, favoring extended flying time and distance. Based on the varying drag coefficients under different conditions, we propose the incorporation of varying drag coefficients in future wind-driven seed dispersal models. 
    more » « less