skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1930014

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The composition of the lower continental crust, as well as its formation, growth, and evolution, remains a fundamental subject to be understood. In this study, we carry out a comparative and integrative analysis of seismic tomographic models, teleseismic receiver function results, and Airy isostasy in order to investigate the properties of the lower continental crust in eastern North America. We extract the depths for Vs of 4.0 km/s, 4.2 km/s, and 4.5 km/s from three selected tomographic models and calculate the differences between the Vs depth contours and the Moho depth defined by receiver functions. We then calculate the Airy isostatic Moho depth and its misfit with the receiver‐function‐defined Moho. Our analysis reveals three key features: (a) the deepening of the Vs depth contours and the strong negative Airy misfit within the U.S. Grenville Province; (b) a seismically faster‐than‐average and compositionally denser‐than‐average lowermost crust in the eastern North American Craton and the Grenville Province; and (c) the thickest, seismically fastest, and densest lowermost crust beneath the southern Grenville Front, the southern Grenville‐Appalachian boundary, and the U.S.‐Canada national border. We suggest that the lower crust of the craton and the Grenville Province has densified through garnet‐forming metamorphic reactions during and after orogenesis, contributing to the widely distributed fast‐velocity layer. The lower crust beneath the tectonic boundaries could have experienced more extensive garnet growth during orogenesis and emplacement of mafic magma. This study provides new constraints on the seismic and compositional properties of the lower crust in eastern North America.

     
    more » « less
  2. null (Ed.)
    The Acadian and Neoacadian orogenies are widely recognized, yet poorly understood, tectono-thermal events in the New England Appalachian Mountains (USA). We quantified two phases of Paleozoic crustal thickening using geochemical proxies. Acadian (425–400 Ma) crustal thickening to 40 km progressed from southeast to northwest. Neoacadian (400–380 Ma) crustal thickening was widely distributed and varied by 30 km (40–70 km) from north to south. Doubly thickened crust and paleoelevations of 5 km or more support the presence of an orogenic plateau at ca. 380–330 Ma in southern New England. Neoacadian crustal thicknesses show a strong correlation with metamorphic isograds, where higher metamorphic grade corresponds to greater paleo-crustal thickness. We suggest that the present metamorphic field gradient was exposed through erosion and orogenic collapse influenced by thermal, isostatic, and gravitational properties related to Neoacadian crustal thickness. Geobarometry in southern New England underestimates crustal thickness and exhumation, suggesting the crust was thinned by tectonic as well as erosional processes. 
    more » « less
  3. null (Ed.)