Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Polyimides (PIs), known for their thermal resistance, chemical stability, and mechanical properties, are often considered challenging materials to process, resulting in limited commercial availability of PIs for melt extrusion, injection molding, and fused filament fabrication (FFF). Currently, material and knowledge gaps prevent the ability to rapidly produce parts from PIs that can be used in high strength and elevated temperature applications. To address this, a novel, fully aromatic PI with thermotropic liquid crystalline properties (LCPI) is successfully synthesized. The synthesized LCPI exhibits better solvent tolerance and thermal stability than commercially available counterparts. The LC phase is confirmed by thermal analysis, wide angle X‐ray scattering, and polarized optical microscopy. Rheological behavior clearly demonstrates that the LC phase reduces melt viscosity. These properties enable the LCPI to be processed into both drawn fibers and filaments for FFF, which is demonstrated alongside an injection molding process. The properties of the printed parts rivaled those made with Ultem 1000, exhibiting an average elastic modulus of 4.16 GPa. The injection molding process resulted in tensile moduli as high as 8.59 GPa and tensile strengths as high as 124.70 MPa. The LCPI polymer demonstrates the desired properties required for aerospace applications via melt processing techniques.more » « less
- 
            Abstract Despite being a pillar of high‐performance materials in industry, manufacturing carbon fiber composites with simultaneously enhanced multifunctionality and structural properties has remained elusive due to the lack of practical bottom‐up approaches with control over nanoscale interactions. Guided by the droplet's internal currents and amphiphilicity of nanomaterials, herein, a programmable spray coating is introduced for the deposition of multiple nanomaterials with tailorable patterns in composite. It is shown that such patterns regulate the formation of interfaces, damage containment, and electrical‐thermal conductivity of the composites, which is absent in conventional manufacturing that primarily rely on incorporating nanomaterials to achieve specific functionalities. Molecular dynamics simulations show that increasing the hydrophilicity of the hybrid nanomaterials, which is synchronous with shifting patterns from disk to ring, improves the interactions between the carbon surfaces and epoxy at the interfaces,manifested in enhanced interlaminar and flexural performance. Transitioning from ring to disk creates a larger interconnected network leading to improved thermal and electrical properties without penalty in mechanical properties. This novel approach introduces a new design , where the mechanical and multifunctional performance is controlled by the shape of the deposited patterns, thus eliminating the trade‐off between properties that are considered paradoxical in today's manufacturing of hierarchical composites.more » « less
- 
            Abstract Dispersing carbon nanomaterials in solvents is effective in transferring their significant mechanical and functional properties to polymers and nanocomposites. However, poor dispersion of carbon nanomaterials impedes exploiting their full potential in nanocomposites. Cellulose nanocrystals (CNCs) are promising for dispersing and stabilizing pristine carbon nanotubes (pCNTs) and graphene nanoplatelets (pGnP) in protic media without functionalization. Here, the underlying mechanisms at the molecular level are investigated between CNC and pCNT/pGnP that stabilize their dispersion in polar solvents. Based on the spectroscopy and microscopy characterization of CNCpCNT/pGnP and density functional theory (DFT) calculations, an additional intermolecular mechanism is proposed between CNC and pCNT/pGnP that forms carbonoxygen covalent bonds between hydroxyl end groups of CNCs and the defected sites of pCNTs/pGnPs preventing re‐agglomeration in polar solvents. This work's findings indicate that the CNC‐assisted process enables new capabilities in harnessing nanostructures at the molecular level and tailoring the performance of nanocomposites at higher length scales.more » « less
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Carbon fiber-based structural lithium-ion batteries are attracting significant attention in the automotive and aerospace industries due to their dual capability of energy storage and mechanical load-bearing, leading to weight reduction. These batteries utilize lightweight carbon fiber (CF) composites, which offer excellent stiffness, strength-to-weight ratios, and electrical conductivity. Polyacrylonitrile-based CFs, comprising graphitic and amorphous carbon, are particularly suitable for Li-ion battery applications as they allow the storage of lithium ions. However, integrating lithium iron phosphate (LFP) into CFs poses challenges due to complex lab-scale processes and the use of toxic dispersants, hindering large-scale industrial compatibility. To address this, we investigate the development of water-based LFP-integrated CF structural Li-ion batteries. Homogeneous suspensions are created using cellulose nanocrystals (CNCs) to form hybrid structures. The battery system employs LFP-modified CF as the cathode, unsized CF as the anode, and a water-based electrolyte. The LFP-CNC-graphene nanoplatelet (GNP) hybrids are coated onto CFs through immersion coating. Scanning electron microscopy (SEM) images confirm the well-dispersed and well-adhered LFP-CNC-GNP structures on the CF surface, contributing to their mechanical interlocking and electrochemical performance. The batteries demonstrate a specific energy density of 62.67 Wh/kg and a specific capacity of 72.7 mAh/g. Furthermore, the cyclic voltammetry experiments reveal the stability of the LFP-CNC-GNP-coated CF batteries over 200 cycles without degradation. This research enables the engineering of hybrid nanostructured battery laminates using novel LFP-CNC-GNP-coated CFs, opening avenues for the development of innovative Li-ion structural batteries.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available