skip to main content


Search for: All records

Award ID contains: 1930769

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Utilizing the unique in‐plane/out‐of‐plane polarization coupling in ferroelectric van der Waals α‐In2Se3, ferroelectric‐polarization‐controlled electrical conductance modulation in two‐dimensional (2D) MoS2with a large dynamic range of over 5 orders of magnitude and excellent non‐volatility is demonstrated. This highly efficient control of the electrical conductance is facilitated by enhanced capacitive coupling through atomic‐layer‐deposition‐grown Al2O3as the dielectric medium. By varying the in‐plane poling bias to the ferroelectric α‐In2Se3, the electrical conductance of vertically stacked 2D MoS2can be tuned continuously. This approach enables simplified device design and provides great flexibility in device integrations, and it can be applied in principle to manipulate the electronic states in any 2D semiconductors for various applications such as transistors, tunneling devices, and reconfigurable electronics. The results also provide insight into the ferroelectric polarization screening by ambient chemical species, highlighting the need for surface passivation, and/or device encapsulations.

     
    more » « less
  2. Abstract

    Ferroelectric memristors represent a promising new generation of devices that have a wide range of applications in memory, digital information processing, and neuromorphic computing. Recently, van der Waals ferroelectric In2Se3with unique interlinked out‐of‐plane and in‐plane polarizations has enabled multidirectional resistance switching, providing unprecedented flexibility in planar and vertical device integrations. However, the operating mechanisms of these devices have remained unclear. Here, through the demonstration of van der Waals In2Se3‐based planar ferroelectric memristors with the device resistance continuously tunable over three orders of magnitude, and by correlating device resistance states, ferroelectric domain configurations, and surface electric potential, the studies reveal that the resistive switching is controlled by the multidomain formations and the associated energy barriers between domains, as opposed to the commonly assumed Schottky barrier modulations at the metal‐ferroelectric interface. The findings reveal new device physics through elucidating the microscopic operating mechanisms of this new generation of devices, and provide a critical guide for future device development and integration efforts.

     
    more » « less
  3. null (Ed.)