skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Highly Efficient Polarization‐Controlled Electrical Conductance Modulation in a van der Waals Ferroelectric/Semiconductor Heterostructure
Abstract Utilizing the unique in‐plane/out‐of‐plane polarization coupling in ferroelectric van der Waals α‐In2Se3, ferroelectric‐polarization‐controlled electrical conductance modulation in two‐dimensional (2D) MoS2with a large dynamic range of over 5 orders of magnitude and excellent non‐volatility is demonstrated. This highly efficient control of the electrical conductance is facilitated by enhanced capacitive coupling through atomic‐layer‐deposition‐grown Al2O3as the dielectric medium. By varying the in‐plane poling bias to the ferroelectric α‐In2Se3, the electrical conductance of vertically stacked 2D MoS2can be tuned continuously. This approach enables simplified device design and provides great flexibility in device integrations, and it can be applied in principle to manipulate the electronic states in any 2D semiconductors for various applications such as transistors, tunneling devices, and reconfigurable electronics. The results also provide insight into the ferroelectric polarization screening by ambient chemical species, highlighting the need for surface passivation, and/or device encapsulations.  more » « less
Award ID(s):
1930769
PAR ID:
10474226
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
8
Issue:
9
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The development of next‐generation in‐memory and neuromorphic computing can be realized with memory transistors based on 2D ferroelectric semiconductors. Among these, In2Se3is the interesting since it possesses ferroelectricity in 2D quintuple layers. Synthesis of large amounts of In2Se3crystals with the desired phase, however, has not been previously achieved. Here, the gram‐scale synthesis of α‐In2Se3crystals using a flash‐within‐flash Joule heating method is demonstrated. This approach allows the synthesis of single‐phase α‐In2Se3crystals regardless of the conductance of precursors in the inner tube and enables the synthesis of gram‐scale quantities of α‐In2Se3crystals. Then, α‐In2Se3flakes are fabricated and used as a 2D ferroelectric semiconductor FET artificial synaptic device platform. By modulating the degree of polarization in α‐In2Se3flakes according to the gate electrical pulses, these devices exhibit distinct essential synaptic behaviors. Their synaptic performance shows excellent and robust reliability under repeated electrical pulses. Finally, it is demonstrated that the synaptic devices achieve an estimated learning accuracy of up to ≈87% for Modified National Institute of Standards and Technology patterns in a single‐layer neural network system. 
    more » « less
  2. Abstract Two‐dimensional (2D) transition metal dichalcogenides (TMDCs) such as MoS2exhibit exceptionally strong nonlinear optical responses, while nanoscale control of the amplitude, polar orientation, and phase of the nonlinear light in TMDCs remains challenging. In this work, by interfacing monolayer MoS2with epitaxial PbZr0.2Ti0.8O3(PZT) thin films and free‐standing PZT membranes, the amplitude and polarization of the second harmonic generation (SHG) signal are modulated via ferroelectric domain patterning, which demonstrates that PZT membranes can lead to in‐operando programming of nonlinear light polarization. The interfacial coupling of the MoS2polar axis with either the out‐of‐plane polar domains of PZT or the in‐plane polarization of domain walls tailors the SHG light polarization into different patterns with distinct symmetries, which are modeled via nonlinear electromagnetic theory. This study provides a new material platform that enables reconfigurable design of light polarization at the nanoscale, paving the path for developing novel optical information processing, smart light modulators, and integrated photonic circuits. 
    more » « less
  3. null (Ed.)
    Indium Selenide (In 2 Se 3 ) is a newly emerged van der Waals (vdW) ferroelectric material, which unlike traditional insulating ferroelectric materials, is a semiconductor with a bandgap of about 1.36 eV. Ferroelectric diodes and transistors based on In 2 Se 3 have been demonstrated. However, the interplay between light and electric polarization in In 2 Se 3 has not been explored. In this paper, we found that the polarization in In 2 Se 3 can be programmed by optical stimuli, due to its semiconducting nature, where the photo generated carriers in In 2 Se 3 can alter the screening field and lead to polarization reversal. Utilizing these unique properties of In 2 Se 3 , we demonstrated a new type of multifunctional device based on 2D heterostructures, which can concurrently serve as a logic gate, photodetector, electronic memory and photonic memory. This dual electrical and optical operation of the memories can simplify the device architecture and offer additional functionalities, such as ultrafast optical erase of large memory arrays. In addition, we show that dual-gate structure can address the partial switching problem commonly observed in In 2 Se 3 ferroelectric transistors, as the two gates can enhance the vertical electric field and facilitate the polarization switching in the semiconducting In 2 Se 3 . These discovered effects are of general nature and should be observable in any ferroelectric semiconductor. These findings deepen the understanding of polarization switching and light-polarization interaction in semiconducting ferroelectric materials and open up their applications in multifunctional electronic and photonic devices. 
    more » « less
  4. Abstract Specific ions can be intercalated into functional materials using the electrolyte gating technique, which has been widely used to regulate channel conductance in transistors and develop low‐power neuromorphic devices. However, in these devices, fundamental exploration of ion intercalation‐induced structural phase transitions remains largely overlooked and rarely explored. Here, the lithium‐based electrolyte gating technique is used to probe the collective interactions between ions, lattices, and electrons in a van der Waals ferroelectric semiconductor α‐In2Se3. Using a polymer electrolyte as the lithium‐ion reservoir and α‐In2Se3as the channel material, the intercalated lithium concentration via a gate electric field is modulated. This manipulation drives a phase transition in α‐In2Se3from a ferroelectric semiconductor to a dirty metal and finally to a metal, accompanied by a structural transformation. Concurrently, with enhanced intercalation, the ferroelectric hysteresis window progressively narrows and eventually disappears, indicating the evolution from switchable to non‐switchable polarization. This study represents a promising platform for the artificial construction of correlated material systems, enabling a systematic investigation into the interaction of ferroelectricity and electronic conduction using ion intercalation. 
    more » « less
  5. Abstract Ferroelectric memristors represent a promising new generation of devices that have a wide range of applications in memory, digital information processing, and neuromorphic computing. Recently, van der Waals ferroelectric In2Se3with unique interlinked out‐of‐plane and in‐plane polarizations has enabled multidirectional resistance switching, providing unprecedented flexibility in planar and vertical device integrations. However, the operating mechanisms of these devices have remained unclear. Here, through the demonstration of van der Waals In2Se3‐based planar ferroelectric memristors with the device resistance continuously tunable over three orders of magnitude, and by correlating device resistance states, ferroelectric domain configurations, and surface electric potential, the studies reveal that the resistive switching is controlled by the multidomain formations and the associated energy barriers between domains, as opposed to the commonly assumed Schottky barrier modulations at the metal‐ferroelectric interface. The findings reveal new device physics through elucidating the microscopic operating mechanisms of this new generation of devices, and provide a critical guide for future device development and integration efforts. 
    more » « less