skip to main content


Title: Highly Efficient Polarization‐Controlled Electrical Conductance Modulation in a van der Waals Ferroelectric/Semiconductor Heterostructure
Abstract

Utilizing the unique in‐plane/out‐of‐plane polarization coupling in ferroelectric van der Waals α‐In2Se3, ferroelectric‐polarization‐controlled electrical conductance modulation in two‐dimensional (2D) MoS2with a large dynamic range of over 5 orders of magnitude and excellent non‐volatility is demonstrated. This highly efficient control of the electrical conductance is facilitated by enhanced capacitive coupling through atomic‐layer‐deposition‐grown Al2O3as the dielectric medium. By varying the in‐plane poling bias to the ferroelectric α‐In2Se3, the electrical conductance of vertically stacked 2D MoS2can be tuned continuously. This approach enables simplified device design and provides great flexibility in device integrations, and it can be applied in principle to manipulate the electronic states in any 2D semiconductors for various applications such as transistors, tunneling devices, and reconfigurable electronics. The results also provide insight into the ferroelectric polarization screening by ambient chemical species, highlighting the need for surface passivation, and/or device encapsulations.

 
more » « less
Award ID(s):
1930769
NSF-PAR ID:
10474226
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
8
Issue:
9
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    An electrical‐biased or mechanical‐loaded scanning probe written on the ferroelectric surface can generate programmable domain nanopatterns for ultra‐scaled and reconfigurable nanoscale electronics. Fabricating ferroelectric domain patterns by direct‐writing as quickly as possible is highly desirable for high response rate devices. Using monolayerα‐In2Se3ferroelectric with ≈1.2 nm thickness and intrinsic out‐of‐plane polarization as an example, a writing‐speed dependent effect on ferroelectric domain switching is discovered. The results indicate that the threshold voltages and threshold forces for domain switching can be increased from −4.2 to −5 V and from 365 to 1216 nN, respectively, as the writing‐speed increases from 2.2 to 10.6 µm s−1. The writing‐speed dependent threshold voltages can be attributed to the nucleations of reoriented ferroelectric domains, in which sufficient time is needed for subsequent domain growth. The writing‐speed dependent threshold forces can be attributed to the flexoelectric effect. Furthermore, the electrical‐mechanical coupling can be employed to decrease the threshold force, achieving as low as ≈189±41 nN, a value smaller than those of perovskite ferroelectric films. Such findings reveal a critical issue of ferroelectric domain pattern engineering that should be carefully addressed for programmable direct‐writing electronics applications.

     
    more » « less
  2. Abstract

    Two‐dimensional (2D) transition metal dichalcogenides (TMDCs) such as MoS2exhibit exceptionally strong nonlinear optical responses, while nanoscale control of the amplitude, polar orientation, and phase of the nonlinear light in TMDCs remains challenging. In this work, by interfacing monolayer MoS2with epitaxial PbZr0.2Ti0.8O3(PZT) thin films and free‐standing PZT membranes, the amplitude and polarization of the second harmonic generation (SHG) signal are modulated via ferroelectric domain patterning, which demonstrates that PZT membranes can lead to in‐operando programming of nonlinear light polarization. The interfacial coupling of the MoS2polar axis with either the out‐of‐plane polar domains of PZT or the in‐plane polarization of domain walls tailors the SHG light polarization into different patterns with distinct symmetries, which are modeled via nonlinear electromagnetic theory. This study provides a new material platform that enables reconfigurable design of light polarization at the nanoscale, paving the path for developing novel optical information processing, smart light modulators, and integrated photonic circuits.

     
    more » « less
  3. Abstract

    Ferroelectric (FE) devices are conventionally switched by an application of an electric field. However, the recent discoveries of light–matter interactions in heterostructures based on 2D semiconductors and FE materials open new opportunities for using light as an additional tool for device programming. Recently, a purely optical switching of FE polarization in heterostructures comprising 2D MoS2and FE oxide perovskites, such as BaTiO3and Pb(Zr,Ti)O3(PZT), was demonstrated. In this work, it is investigated whether this optical switching has a practical value and can be used to improve functional characteristics of MoS2‐PZT FE field‐effect transistors for nonvolatile memory applications. It is demonstrated that the combined use of an electrical field and visible light improves the nonvolatile ON/OFF ratios in MoS2‐PZT memories by several orders of magnitude compared to their purely electrical operation. The memories are read at zero gate voltage (VG) in darkness, but their ON and OFF currents, which routinely varied for different devices by over 105, are achieved by programming at the sameVG = −6 V with (ON state) and without (OFF state) light illumination, demonstrating its crucial importance. The light can likely serve as an important tool for better programming of a large variety of other semiconductor‐FE devices.

     
    more » « less
  4. Abstract

    Two-dimensional (2D) materials such as semiconductors and ferroelectrics are promising for future energy-efficient logic devices because of their extraordinary electronic properties at atomic thickness. In this work, we investigated a van der Waals heterostructure composited of 2D semiconducting MoS2and 2D ferroelectric CuInP2S6(CIPS) and NiPS3. Instead of using 2D ferroelectrics as conventional gate dielectric layers, here we applied CIPS and NiPS3as a ferroelectric capping layer, and investigated a long-distance coupling effect with the gate upon the sandwiched 2D MoS2channels. Our experimental results showed an outstanding enhancement of the electrodynamic gating in 2D MoS2transistors, represented by a significant reduction of subthreshold swing at room temperature. This was due to the coupling-induced polarization of 2D ferroelectrics at 2D semiconductor surface which led to an effective and dynamic magnification of the gate capacitance. Meanwhile, the electrostatic gating was remained steady after adding the ferroelectric capping layer, providing ease and compatibility for further implementation with existing circuit and system design. Our work demonstrates the long-distance coupling effect of 2D ferroelectrics in a capping architecture, reveals its impacts from both electrodynamic and electrostatic perspectives, and expands the potential of 2D ferroelectrics to further improve the performance of energy-efficient nanoelectronics.

     
    more » « less
  5. null (Ed.)
    Indium Selenide (In 2 Se 3 ) is a newly emerged van der Waals (vdW) ferroelectric material, which unlike traditional insulating ferroelectric materials, is a semiconductor with a bandgap of about 1.36 eV. Ferroelectric diodes and transistors based on In 2 Se 3 have been demonstrated. However, the interplay between light and electric polarization in In 2 Se 3 has not been explored. In this paper, we found that the polarization in In 2 Se 3 can be programmed by optical stimuli, due to its semiconducting nature, where the photo generated carriers in In 2 Se 3 can alter the screening field and lead to polarization reversal. Utilizing these unique properties of In 2 Se 3 , we demonstrated a new type of multifunctional device based on 2D heterostructures, which can concurrently serve as a logic gate, photodetector, electronic memory and photonic memory. This dual electrical and optical operation of the memories can simplify the device architecture and offer additional functionalities, such as ultrafast optical erase of large memory arrays. In addition, we show that dual-gate structure can address the partial switching problem commonly observed in In 2 Se 3 ferroelectric transistors, as the two gates can enhance the vertical electric field and facilitate the polarization switching in the semiconducting In 2 Se 3 . These discovered effects are of general nature and should be observable in any ferroelectric semiconductor. These findings deepen the understanding of polarization switching and light-polarization interaction in semiconducting ferroelectric materials and open up their applications in multifunctional electronic and photonic devices. 
    more » « less