skip to main content


Search for: All records

Award ID contains: 1930783

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a computational study on the solid–solid phase transition of a model two-dimensional system between hexagonal and square phases under pressure. The atomistic mechanism of phase nucleation and propagation are determined using solid-state Dimer and nudged elastic band (NEB) methods. The Dimer is applied to identify the saddle configurations and NEB is applied to generate the transition minimum energy path (MEP) using the outputs of Dimer. Both the atomic and cell degrees of freedom are used in saddle search, allowing us to capture the critical nuclei with relatively small supercells. It is found that the phase nucleation in the model material is triggered by the localized shear deformation that comes from the relative shift between two adjacent atomic layers. In addition to the conventional layer-by-layer phase propagation, an interesting defect-assisted low barrier propagation path is identified in the hexagonal to square phase transition. The study demonstrates the significance of using the Dimer method in exploring unknown transition paths without a priori assumption. The results of this study also shed light on phase transition mechanisms of other solid-state and colloidal systems. 
    more » « less
  2. null (Ed.)