skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1930806

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Purpose

    Aquatic plants, including rice, develop iron (Fe) plaques on their roots due to radial oxygen loss (ROL), and these plaques accumulate both beneficial and toxic elements. Silicon is an important nutrient for rice and both accumulates in Fe plaque and can affect ROL. How these plaques form over time and how Si affects this process remains unclear.

    Methods

    Rice was grown in a pot study with 4 levels of added Si. Root Fe plaque formation was monitored weekly using vinyl films placed between the pot and soil. Plants were grown to maturity and then ratooned to also examine the formation of Fe plaque during the ratoon crop.

    Results

    Iron plaque formation increased exponentially during the vegetative phase, peaked at the booting phase, then decreased exponentially – a pattern that repeated in the ratoon crop. While the highest Si treatment led to an earlier onset of Fe plaque formation, increasing Si decreased the amount of Fe plaque at harvest, resulting in a minimal net effect.

    Conclusions

    The kinetics of Fe plaque formation are dependent on rice growth stage, which may affect whether the Fe plaque is a source or sink of elements such as phosphorous and arsenic.

     
    more » « less
  2. Abstract Purpose

    Rice is a staple crop worldwide and a silicon (Si) hyperaccumulator with Si levels reaching 5–10% of its mass; this can result in desilication and Si-deficiency if plant residues are not managed correctly. Rice is also uniquely subject to arsenic (As) and cadmium (Cd) contamination depending on soil conditions. Our goal is to quantify the effects of rice husk (a Si-rich milling byproduct) amendments and different water management strategies on rice uptake of Si, As, and Cd.

    Methods

    We employed 4 husk amendment treatments: Control (no husk), Husk (untreated husk), Biochar (husk pyrolyzed at 450 °C), and CharSil (husk combusted at > 1000 °C). Each of these amendments was studied under nonflooded, alternate wetting and drying (AWD), and flooded water management in a pot study. Porewater chemistry and mature plant elemental composition were measured.

    Results

    Husk and Biochar treatments, along with flooding, increased porewater and plant Si. Vegetative tissue As decreased with increasing porewater Si, but grain As and plant Cd were primarily controlled by water management. Grain As and Cd were inversely correlated and are simultaneously minimized in a redox potential (Eh) range of 225–275 mV in the studied soil. Ferrihydrite in root iron plaque decreased As translocation from porewater to grain, but amendments were not able to increase plaque ferrihydrite content.

    Conclusion

    We conclude moderate husk amendment rates (i.e., 4 years’ worth) with minimal pretreatment strongly increases rice Si content but may not be sufficient to decrease grain As in low Si and As soil.

     
    more » « less
  3. Abstract

    Soils with seasonal or continuous water saturation are characterized by unique redox‐related processes including Fe and Mn oxide reduction. Indicators of reduction in soils (IRIS) devices were created as low‐cost, direct sensors of such reduced chemistry. Such IRIS devices are painted with oxides of Fe or Mn, inserted into the soil, and then removed after a period of time; once removed, the paint lost due to reductive dissolution of these oxides is used to indicate the presence, location, and/or intensity of reducing conditions. However, quantifying the paint removal using existing methods can be subjective and time consuming. Here, we describe the use of the IRIS Imager, an image analysis program that calculates removal of paint from IRIS films inL*a*b* color space (whereL* is lightness,a* is red–green value, andb* is blue–yellow value) by comparing the change in lightness between initial and final IRIS film images. Paint removal from films deployed in flooded rice (Oryza sativaL.) paddy soils were quantified using the IRIS Imager, the grid method, and chemical extractions of IRIS films. All three methods were suitable for quantification of paint removal, but the IRIS Imager provided additional statistics to assess heterogeneity in paint removal on individual films and a less subjective approach to quantifying Mn oxide paint removal when Fe oxidation on Mn films was present. This free software can be used with IRIS devices to reproducibly measure paint removal from Fe oxide and Mn oxide IRIS and Fe oxide precipitation on Mn oxide IRIS.

     
    more » « less
  4. Free, publicly-accessible full text available December 1, 2024
  5. Concentrations of nutrients and contaminants in rice grain affect human health, specifically through the localization and chemical form of elements. Methods to spatially quantify the concentration and speciation of elements are needed to protect human health and characterize elemental homeostasis in plants. Here, an evaluation was carried out using quantitative synchrotron radiation microprobe X-ray fluorescence (SR-µXRF) imaging by comparing average rice grain concentrations of As, Cu, K, Mn, P, S and Zn measured with rice grain concentrations from acid digestion and ICP-MS analysis for 50 grain samples. Better agreement was found between the two methods for high-Zelements. Regression fits between the two methods allowed quantitative concentration maps of the measured elements. These maps revealed that most elements were concentrated in the bran, although S and Zn permeated into the endosperm. Arsenic was highest in the ovular vascular trace (OVT), with concentrations approaching 100 mg kg−1in the OVT of a grain from a rice plant grown in As-contaminated soil. Quantitative SR-µXRF is a useful approach for comparison across multiple studies but requires careful consideration of sample preparation and beamline characteristics.

     
    more » « less