Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
The hydrodynamics of a self-propelling swimmer undergoing intermittent S-start swimming are investigated extensively with varying duty cycle$$DC$$, swimming period$$T$$, and tailbeat amplitude$$A$$. We find that the steady time-averaged swimming speed$$\bar {U}_x$$increases directly with$$A$$, but varies inversely with$$DC$$and$$T$$, where there is a maximal improvement of$$541.29\,\%$$over continuous cruising swimming. Our results reveal two scaling laws, in the form of input versus output relations, that relate the swimmer's kinematics to its hydrodynamic performance: swimming speed and efficiency. A smaller$$DC$$causes increased fluctuations in the swimmer's velocity generation. A larger$$A$$, on the other hand, allows the swimmer to reach steady swimming more quickly. Although we set out to determine scaling laws for intermittent S-start swimming, these scaling laws extend naturally to burst-and-coast and continuous modes of swimming. Additionally, we have identified, categorized and linked the wake structures produced by intermittent S-start swimmers with their velocity generation.more » « lessFree, publicly-accessible full text available April 10, 2025