skip to main content


Search for: All records

Award ID contains: 1931435

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Owing to its low density and high temperature, the solar wind frequently exhibits strong departures from local thermodynamic equilibrium, which include distinct temperatures for its constituent ions. Prior studies have found that the ratio of the temperatures of the two most abundant ions—protons (ionized hydrogen) andα-particles (ionized helium)—is strongly correlated with the Coulomb collisional age. These previous studies, though, have been largely limited to using observations from single missions. In contrast, this present study utilizes contemporaneous, in situ observations from two different spacecraft at two different distances from the Sun: the Parker Solar Probe (PSP;r= 0.1–0.3 au) and Wind (r= 1.0 au). Collisional analysis, which incorporates the equations of collisional relaxation and large-scale expansion, was applied to each PSP datum to predict the state of the plasma farther from the Sun atr= 1.0 au. The distribution of these predictedα–proton relative temperatures agrees well with that of values observed by Wind. These results strongly suggest that, outside of the corona, relative ion temperatures are principally affected by Coulomb collisions and that the preferential heating ofα-particles is largely limited to the corona.

     
    more » « less
  2. null (Ed.)
    Unlike the vast majority of astrophysical plasmas, the solar wind is accessible to spacecraft, which for decades have carried in-situ instruments for directly measuring its particles and fields. Though such measurements provide precise and detailed information, a single spacecraft on its own cannot disentangle spatial and temporal fluctuations. Even a modest constellation of in-situ spacecraft, though capable of characterizing fluctuations at one or more scales, cannot fully determine the plasma’s 3-D structure. We describe here a concept for a new mission, the Magnetic Topology Reconstruction Explorer (MagneToRE), that would comprise a large constellation of in-situ spacecraft and would, for the first time, enable 3-D maps to be reconstructed of the solar wind’s dynamic magnetic structure. Each of these nanosatellites would be based on the CubeSat form-factor and carry a compact fluxgate magnetometer. A larger spacecraft would deploy these smaller ones and also serve as their telemetry link to the ground and as a host for ancillary scientific instruments. Such an ambitious mission would be feasible under typical funding constraints thanks to advances in the miniaturization of spacecraft and instruments and breakthroughs in data science and machine learning. 
    more » « less