Title: MagneToRE: Mapping the 3-D Magnetic Structure of the Solar Wind Using a Large Constellation of Nanosatellites
Unlike the vast majority of astrophysical plasmas, the solar wind is accessible to spacecraft, which for decades have carried in-situ instruments for directly measuring its particles and fields. Though such measurements provide precise and detailed information, a single spacecraft on its own cannot disentangle spatial and temporal fluctuations. Even a modest constellation of in-situ spacecraft, though capable of characterizing fluctuations at one or more scales, cannot fully determine the plasma’s 3-D structure. We describe here a concept for a new mission, the Magnetic Topology Reconstruction Explorer (MagneToRE), that would comprise a large constellation of in-situ spacecraft and would, for the first time, enable 3-D maps to be reconstructed of the solar wind’s dynamic magnetic structure. Each of these nanosatellites would be based on the CubeSat form-factor and carry a compact fluxgate magnetometer. A larger spacecraft would deploy these smaller ones and also serve as their telemetry link to the ground and as a host for ancillary scientific instruments. Such an ambitious mission would be feasible under typical funding constraints thanks to advances in the miniaturization of spacecraft and instruments and breakthroughs in data science and machine learning. more »« less
Horbury, T. S.; O’Brien, H.; Carrasco Blazquez, I.; Bendyk, M.; Brown, P.; Hudson, R.; Evans, V.; Oddy, T. M.; Carr, C. M.; Beek, T. J.; et al
(, Astronomy & Astrophysics)
null
(Ed.)
The magnetometer instrument on the Solar Orbiter mission is designed to measure the magnetic field local to the spacecraft continuously for the entire mission duration. The need to characterise not only the background magnetic field but also its variations on scales from far above to well below the proton gyroscale result in challenging requirements on stability, precision, and noise, as well as magnetic and operational limitations on both the spacecraft and other instruments. The challenging vibration and thermal environment has led to significant development of the mechanical sensor design. The overall instrument design, performance, data products, and operational strategy are described.
Bian, N. H.; Li, Gang
(, The Astrophysical Journal)
Abstract We present a Langevin model describing the local structure of the interplanetary magnetic field lines. It is established on the basis of the analysis of the Lagrangian properties of strong Alfvénic turbulence, which provides a new perspective on the critical balance condition. The model is consistent with the k ∥ − 2 spectrum of magnetic fluctuations derived from in situ measurements. We show that the magnetic field line diffusivity at the spacecraft position can be inferred from the wavelet analysis of one-point measurements of the fluctuating magnetic fields in the solar wind independently of the three-dimensional nature of the anisotropy.
Lee, S H; Sibeck, D G; Wang, X; Lin, Y; Angelopoulos, V; Giles, B L; Torbert, R B; Russell, C T; Wei, H; Burch, J L
(, Journal of Geophysical Research: Space Physics)
Abstract We use the three‐dimensional (3‐D) global hybrid code ANGIE3D to simulate the interaction of four solar wind tangential discontinuities (TDs) observed by ARTEMIS P1 from 0740 UT to 0800 UT on 28 December 2019 with the bow shock, magnetosheath, and magnetosphere. We demonstrate how the four discontinuities produce foreshock transients, a magnetosheath cavity‐like structure, and a brief magnetopause crossing observed by THEMIS and MMS spacecraft from 0800 UT to 0830 UT. THEMIS D observed entries into foreshock transients exhibiting low density, low magnetic field strength, and high temperature cores bounded by compressional regions with high densities and high magnetic field strengths. The MMS spacecraft observed cavities with strongly depressed magnetic field strengths and highly deflected velocity in the magnetosheath downstream from the foreshock. Dawnside THEMIS A magnetosheath observations indicate a brief magnetosphere entry exhibiting enhanced magnetic field strength, low density, and decreased and deflected velocity (sunward flow). The solar wind inputs into the 3‐D hybrid simulations resemble those seen by ARTEMIS. We simulate the interaction of four oblique TDs with properties similar to those in the observation. We place virtual spacecraft at the locations where observations were made. The hybrid simulations predict similar characteristics of the foreshock transients, a magnetosheath cavity, and a magnetopause crossing with characteristics similar to those observed by the multi‐spacecraft observations. The detailed and successful comparison of the interaction involving multiple TDs will be presented.
Zank, G. P.; Zhao, L. -L.; Adhikari, L.; Nakanotani, M.; Pitňa, A.; Telloni, D.; Che, H.
(, The Astrophysical Journal Supplement Series)
Abstract Small-amplitude fluctuations in the magnetized solar wind are measured typically by a single spacecraft. In the magnetohydrodynamics (MHD) description, fluctuations are typically expressed in terms of the fundamental modes admitted by the system. An important question is how to resolve an observed set of fluctuations, typically plasma moments such as the density, velocity, pressure, and magnetic field fluctuations, into their constituent fundamental MHD modal components. Despite its importance in understanding the basic elements of waves and turbulence in the solar wind, this problem has not yet been fully resolved. Here, we introduce a new method that identifies between wave modes and advected structures such as magnetic islands or entropy modes and computes the phase information associated with the eligible MHD modes. The mode-decomposition method developed here identifies the admissible modes in an MHD plasma from a set of plasma and magnetic field fluctuations measured by a single spacecraft at a specific frequency and an inferred wavenumberkm. We present data from three typical intervals measured by the Wind and Solar Orbiter spacecraft at ∼1 au and show how the new method identifies both propagating (wave) and nonpropagating (structures) modes, including entropy and magnetic island modes. This allows us to identify and characterize the separate MHD modes in an observed plasma parcel and to derive wavenumber spectra of entropic density, fast and slow magnetosonic, Alfvénic, and magnetic island fluctuations for the first time. These results help identify the fundamental building blocks of turbulence in the magnetized solar wind.
Palmerio, Erika; Kay, Christina; Al-Haddad, Nada; Lynch, Benjamin J.; Yu, Wenyuan; Stevens, Michael L.; Pal, Sanchita; Lee, Christina O.
(, The Astrophysical Journal)
Abstract Stealth coronal mass ejections (CMEs) are eruptions from the Sun that are not associated with appreciable low-coronal signatures. Because they often cannot be linked to a well-defined source region on the Sun, analysis of their initial magnetic configuration and eruption dynamics is particularly problematic. In this article, we address this issue by undertaking the first attempt at predicting the magnetic fields of a stealth CME that erupted in 2020 June from the Earth-facing Sun. We estimate its source region with the aid of off-limb observations from a secondary viewpoint and photospheric magnetic field extrapolations. We then employ the Open Solar Physics Rapid Ensemble Information modeling suite to evaluate its early evolution and forward model its magnetic fields up to Parker Solar Probe, which detected the CME in situ at a heliocentric distance of 0.5 au. We compare our hindcast prediction with in situ measurements and a set of flux-rope reconstructions, obtaining encouraging agreement on arrival time, spacecraft-crossing location, and magnetic field profiles. This work represents a first step toward reliable understanding and forecasting of the magnetic configuration of stealth CMEs and slow streamer-blowout events.
Maruca, Bennett A., Agudelo Rueda, Jeffersson A., Bandyopadhyay, Riddhi, Bianco, Federica B., Chasapis, Alexandros, Chhiber, Rohit, DeWeese, Haley, Matthaeus, William H., Miles, David M., Qudsi, Ramiz A., Richardson, Michael J., Servidio, Sergio, Shay, Michael A., Sundkvist, David, Verscharen, Daniel, Vines, Sarah K., Westlake, Joseph H., and Wicks, Robert T. MagneToRE: Mapping the 3-D Magnetic Structure of the Solar Wind Using a Large Constellation of Nanosatellites. Retrieved from https://par.nsf.gov/biblio/10282800. Frontiers in Astronomy and Space Sciences 8. Web. doi:10.3389/fspas.2021.665885.
Maruca, Bennett A., Agudelo Rueda, Jeffersson A., Bandyopadhyay, Riddhi, Bianco, Federica B., Chasapis, Alexandros, Chhiber, Rohit, DeWeese, Haley, Matthaeus, William H., Miles, David M., Qudsi, Ramiz A., Richardson, Michael J., Servidio, Sergio, Shay, Michael A., Sundkvist, David, Verscharen, Daniel, Vines, Sarah K., Westlake, Joseph H., & Wicks, Robert T. MagneToRE: Mapping the 3-D Magnetic Structure of the Solar Wind Using a Large Constellation of Nanosatellites. Frontiers in Astronomy and Space Sciences, 8 (). Retrieved from https://par.nsf.gov/biblio/10282800. https://doi.org/10.3389/fspas.2021.665885
Maruca, Bennett A., Agudelo Rueda, Jeffersson A., Bandyopadhyay, Riddhi, Bianco, Federica B., Chasapis, Alexandros, Chhiber, Rohit, DeWeese, Haley, Matthaeus, William H., Miles, David M., Qudsi, Ramiz A., Richardson, Michael J., Servidio, Sergio, Shay, Michael A., Sundkvist, David, Verscharen, Daniel, Vines, Sarah K., Westlake, Joseph H., and Wicks, Robert T.
"MagneToRE: Mapping the 3-D Magnetic Structure of the Solar Wind Using a Large Constellation of Nanosatellites". Frontiers in Astronomy and Space Sciences 8 (). Country unknown/Code not available. https://doi.org/10.3389/fspas.2021.665885.https://par.nsf.gov/biblio/10282800.
@article{osti_10282800,
place = {Country unknown/Code not available},
title = {MagneToRE: Mapping the 3-D Magnetic Structure of the Solar Wind Using a Large Constellation of Nanosatellites},
url = {https://par.nsf.gov/biblio/10282800},
DOI = {10.3389/fspas.2021.665885},
abstractNote = {Unlike the vast majority of astrophysical plasmas, the solar wind is accessible to spacecraft, which for decades have carried in-situ instruments for directly measuring its particles and fields. Though such measurements provide precise and detailed information, a single spacecraft on its own cannot disentangle spatial and temporal fluctuations. Even a modest constellation of in-situ spacecraft, though capable of characterizing fluctuations at one or more scales, cannot fully determine the plasma’s 3-D structure. We describe here a concept for a new mission, the Magnetic Topology Reconstruction Explorer (MagneToRE), that would comprise a large constellation of in-situ spacecraft and would, for the first time, enable 3-D maps to be reconstructed of the solar wind’s dynamic magnetic structure. Each of these nanosatellites would be based on the CubeSat form-factor and carry a compact fluxgate magnetometer. A larger spacecraft would deploy these smaller ones and also serve as their telemetry link to the ground and as a host for ancillary scientific instruments. Such an ambitious mission would be feasible under typical funding constraints thanks to advances in the miniaturization of spacecraft and instruments and breakthroughs in data science and machine learning.},
journal = {Frontiers in Astronomy and Space Sciences},
volume = {8},
author = {Maruca, Bennett A. and Agudelo Rueda, Jeffersson A. and Bandyopadhyay, Riddhi and Bianco, Federica B. and Chasapis, Alexandros and Chhiber, Rohit and DeWeese, Haley and Matthaeus, William H. and Miles, David M. and Qudsi, Ramiz A. and Richardson, Michael J. and Servidio, Sergio and Shay, Michael A. and Sundkvist, David and Verscharen, Daniel and Vines, Sarah K. and Westlake, Joseph H. and Wicks, Robert T.},
editor = {null}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.