skip to main content


Search for: All records

Award ID contains: 1931511

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We provide data on daily social contact intensity of clusters of people at different types of Points of Interest (POI) by zip code in Florida and California. This data is obtained by aggregating fine-scaled details of interactions of people at the spatial resolution of 10 m, which is then normalized as a social contact index. We also provide the distribution of cluster sizes and average time spent in a cluster by POI type. This data will help researchers perform fine-scaled, privacy-preserving analysis of human interaction patterns to understand the drivers of the COVID-19 epidemic spread and mitigation. Current mobility datasets either provide coarse-level metrics of social distancing, such as radius of gyration at the county or province level, or traffic at a finer scale, neither of which is a direct measure of contacts between people. We use anonymized, de-identified, and privacy-enhanced location-based services (LBS) data from opted-in cell phone apps, suitably reweighted to correct for geographic heterogeneities, and identify clusters of people at non-sensitive public areas to estimate fine-scaled contacts.

     
    more » « less
  2. Pedestrian dynamics is an approach for modeling the fine-scaled movement of people. It is finding increasing application in the analysis of infection risk for directly transmitted diseases during air travel. A parameter sweep is often needed to evaluate infection risk for a variety of possible scenarios to account for inherent variability in human behavior. A low discrepancy parameter sweep was recently introduced to reduce the computational effort by one to three orders of magnitude. However, it has the following limitations: (i) a low overhead parallelization leads to significant load imbalance, and (ii) the convergence rate worsens with dimension. This paper examines whether pseudorandom and hybrid sequences can overcome these defects and whether the convergence criteria can be changed to yield accurate solutions faster. We simulate the deplaning process of an airplane using different parameter sweep strategies and evaluate their relative computational efficiencies. Our results show that hybrid and pseudorandom parameter sweeps are advantageous for moderate accuracy, while a low discrepancy sweep is preferable for high accuracy. Our results also show that the convergence criteria could be relaxed substantially to yield accurate solutions around a factor of 20 faster. They promise to help a variety of applications that employ large parameter sweeps for modeling infection risk. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Airlines have introduced a back-to-front boarding process in response to the COVID-19 pandemic. It is motivated by the desire to reduce passengers' likelihood of passing close to seated passengers when they take their seats. However, our prior work on the risk of Ebola spread in aeroplanes suggested that the driving force for increased exposure to infection transmission risk is the clustering of passengers while waiting for others to stow their luggage and take their seats. In this work, we examine whether the new boarding processes lead to increased or decreased risk of infection spread. We also study the reasons behind the risk differences associated with different boarding processes. We accomplish this by simulating the new boarding processes using pedestrian dynamics and compare them against alternatives. Our results show that back-to-front boarding roughly doubles the infection exposure compared with random boarding. It also increases exposure by around 50% compared to a typical boarding process prior to the outbreak of COVID-19. While keeping middle seats empty yields a substantial reduction in exposure, our results show that the different boarding processes have similar relative strengths in this case as with middle seats occupied. We show that the increased exposure arises from the proximity between passengers moving in the aisle and while seated. Such exposure can be reduced significantly by prohibiting the use of overhead bins to stow luggage. Our results suggest that the new boarding procedures increase the risk of exposure to COVID-19 compared with prior ones and are substantially worse than a random boarding process. 
    more » « less
  5. null (Ed.)
    Public health advisories recommend against the use of the N95 respirator by the general public in the current COVID-19 pandemic. These advisories are primarily motivated by the collective goal of reducing the reproduction number to below one. However, cultural factors may dissuade the public from adopting recommendations from models optimized for the collective good. This article presents a discussion of mathematical issues that ought to guide an advisory from an individualistic perspective. In particular, we argue that the public health advisory does not appear justified if one considers non-linearity in the dose-response relationship and heterogeneity in infection load in the context of the COVID-19 pandemic. The N95 respirator promises far greater effectiveness than homemade or surgical masks. However, due to a considerable variation in masks’ brands and efficiencies, the public should look into the specific details of each available mask option. 
    more » « less