Airlines have introduced a back-to-front boarding process in response to the COVID-19 pandemic. It is motivated by the desire to reduce passengers’ likelihood of passing close to seated passengers when they take their seats. However, our prior work on the risk of Ebola spread in aeroplanes suggested that the driving force for increased exposure to infection transmission risk is the clustering of passengers while waiting for others to stow their luggage and take their seats. In this work, we examine whether the new boarding processes lead to increased or decreased risk of infection spread. We also study the reasons behind the risk differences associated with different boarding processes. We accomplish this by simulating the new boarding processes using pedestrian dynamics and compare them against alternatives. Our results show that backto-front boarding roughly doubles the infection exposure compared with random boarding. It also increases exposure by around 50% compared to a typical boarding process prior to the outbreak of COVID-19. While keeping middle seats empty yields a substantial reduction in exposure, our results show that the different boarding processes have similar relative strengths in this case as with middle seats occupied. We show that the increased exposure arises from the proximity between passengers moving in the aisle and while seated. Such exposure can be reduced significantly by prohibiting the use of overhead bins to stow luggage. Our results suggest that the new boarding procedures increase the risk of exposure to COVID-19 compared with prior ones and are substantially worse than a random boarding process 
                        more » 
                        « less   
                    
                            
                            From bad to worse: airline boarding changes in response to COVID-19
                        
                    
    
            Airlines have introduced a back-to-front boarding process in response to the COVID-19 pandemic. It is motivated by the desire to reduce passengers' likelihood of passing close to seated passengers when they take their seats. However, our prior work on the risk of Ebola spread in aeroplanes suggested that the driving force for increased exposure to infection transmission risk is the clustering of passengers while waiting for others to stow their luggage and take their seats. In this work, we examine whether the new boarding processes lead to increased or decreased risk of infection spread. We also study the reasons behind the risk differences associated with different boarding processes. We accomplish this by simulating the new boarding processes using pedestrian dynamics and compare them against alternatives. Our results show that back-to-front boarding roughly doubles the infection exposure compared with random boarding. It also increases exposure by around 50% compared to a typical boarding process prior to the outbreak of COVID-19. While keeping middle seats empty yields a substantial reduction in exposure, our results show that the different boarding processes have similar relative strengths in this case as with middle seats occupied. We show that the increased exposure arises from the proximity between passengers moving in the aisle and while seated. Such exposure can be reduced significantly by prohibiting the use of overhead bins to stow luggage. Our results suggest that the new boarding procedures increase the risk of exposure to COVID-19 compared with prior ones and are substantially worse than a random boarding process. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10300207
- Date Published:
- Journal Name:
- Royal Society Open Science
- Volume:
- 8
- Issue:
- 4
- ISSN:
- 2054-5703
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            COVID-19 pandemic has resulted in an over 60 % reduction in airtravel worldwide according to some estimates. The high economic and public perception costs of potential superspreading during air-travel necessitates research efforts that model, explain and mitigate disease spread. The long-duration exposure to infected passengers and the limited air circulation in the cabin are considered to be responsible for the infection spread during flight. Consequently, recent public health measures are primarily based on these aspects. However, a survey of recent on-flight outbreaks indicates that some aspects of the COVID-19 spread, such as long-distance superspreading, cannot be explained without also considering the movement of people. Another factor that could be influential but has not gained much attention yet is the unpredictable passenger behavior. Here, we use a novel infection risk model that is linked with pedestrian dynamics to accurately capture these aspects of infection spread. The model is parameterized through spatiotemporal analysis of a recent superspreading event in a restaurant in China. The passenger movement during boarding and deplaning, as well as the in-plane movement, are modeled with social force model and agent-based model respectively. We utilize the model to evaluate what-if scenarios on the relative effectiveness of policies and procedures such as masking, social distancing, as well as synergistic effects by combining different approaches in airplanes and other contexts. We find that in certain instances independent strategies can combine synergistically to reduce infection probability, by more than a sum of individual strategiesmore » « less
- 
            Background: Nursing home (NH) residents and staff were at high risk for COVID-19 early in the pandemic; several studies estimated seroprevalence of infection in NH staff to be 3-fold higher among CNAs and nurses compared to other staff. Risk mitigation added in Fall 2020 included systematic testing of residents and staff (and furlough if positive) to reduce transmission risk. We estimated risks for SARS-CoV-2 infection among NH staff during the first winter surge before widespread vaccination. Methods: Between February and May 2021, voluntary serologic testing was performed on NH staff who were seronegative for SARS-CoV-2 in late Fall 2020 (during a previous serology study at 14 Georgia NHs). An exposure assessment at the second time point covered prior 3 months of job activities, community exposures, and self-reported COVID-19 vaccination, including very recent vaccination (≤4 weeks). Risk factors for seroconversion were estimated by job type using multivariable logistic regression, accounting for interval community-incidence and interval change in resident infections per bed. Results: Among 203 eligible staff, 72 (35.5%) had evidence of interval seroconversion (Fig. 1). Among 80 unvaccinated staff, interval infection was significantly higher among CNAs and nurses (aOR, 4.9; 95% CI, 1.4–20.7) than other staff, after adjusting for race and interval community incidence and facility infections. This risk persisted but was attenuated when utilizing the full study cohort including those with very recent vaccination (aOR, 1.8; 95% CI, 0.9–3.7). Conclusions : Midway through the first year of the pandemic, NH staff with close or common resident contact continued to be at increased risk for infection despite enhanced infection prevention efforts. Mitigation strategies, prior to vaccination, did not eliminate occupational risk for infection. Vaccine utilization is critical to eliminate occupational risk among frontline healthcare providers. Funding: None Disclosures: Nonemore » « less
- 
            The uneven spread of COVID-19 has resulted in disparate experiences for marginalized populations in urban centers. Using computational models, we examine the effects of local cohesion on COVID-19 spread in social contact networks for the city of San Francisco, finding that more early COVID-19 infections occur in areas with strong local cohesion. This spatially correlated process tends to affect Black and Hispanic communities more than their non-Hispanic White counterparts. Local social cohesion thus acts as a potential source of hidden risk for COVID-19 infection.more » « less
- 
            The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to impact the United States. While age and comorbid health conditions remain primary concerns in the community-based transmission of the virus, empirical evidence continues to suggest that substantial variability exists in the geographic and geodemographic distribution of COVID-19 infection rates. The purpose of this paper is to provide an alternative, spatiotemporal perspective on the pandemic using the state of Wisconsin as a case study. Specifically, in this paper, we explore the geographic nuances of COVID-19 and its spread in Wisconsin using a suite of spatial statistical approaches. We link detected hot spots of COVID-19 to local geodemographic profiles and the presence of high-risk facilities, including federal and state correctional facilities. The results suggest that the virus disproportionately impacts several communities and geodemographic groups and that proximity to risky facilities correlates to increased community infection rates.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    