Magnetic polarity inversion lines (PILs) detected in solar active regions have long been recognized as arguably the most essential feature for triggering instabilities such as flares and eruptive events (i.e., eruptive flares and coronal mass ejections). In recent years, efforts have been focused on using features engineered from PILs for solar eruption prediction. However, PIL rasters and metadata are often generated as by-products and are not accessible for public use, which limits their utilization in data-intensive space weather analytics applications. We introduce a large-scale publicly available PIL data set covering practically the entire solar cycle 24 for applying to various space weather forecasting and analytics tasks. The data set is created using both radial magnetic field (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract B _r) and line-of-sight (B _LoS) magnetograms from the Solar Dynamics Observatory’s Helioseismic and Magnetic Imager Active Region Patches (HARP) that involve 4090 HARP series ranging from 2010 May to 2019 March. This data set includes three PIL-related binary masks of rasters: the actual PILs as per the spatial analysis of the magnetograms, the region of polarity inversion, and the convex hull of PILs, along with time-series-structured metadata extracted from these masks. We also provide a preliminary exploratory analysis of selected features aiming to correlate time series of feature metadata and eruptive activity originating from active regions. We envision that this comprehensive PIL data set will complement existing data sets used for space weather forecasting and benefit research in related areas, specifically in better understanding the PIL structure, evolution, and role in eruptions. -
Abstract We introduce and make openly accessible a comprehensive, multivariate time series (MVTS) dataset extracted from solar photospheric vector magnetograms in Spaceweather HMI Active Region Patch (SHARP) series. Our dataset also includes a cross-checked NOAA solar flare catalog that immediately facilitates solar flare prediction efforts. We discuss methods used for data collection, cleaning and pre-processing of the solar active region and flare data, and we further describe a novel data integration and sampling methodology. Our dataset covers 4,098 MVTS data collections from active regions occurring between May 2010 and December 2018, includes 51 flare-predictive parameters, and integrates over 10,000 flare reports. Potential directions toward expansion of the time series, either “horizontally” – by adding more prediction-specific parameters, or “vertically” – by generalizing flare into integrated solar eruption prediction, are also explained. The immediate tasks enabled by the disseminated dataset include: optimization of solar flare prediction and detailed investigation for elusive flare predictors or precursors, with both operational (research-to-operations), and basic research (operations-to-research) benefits potentially following in the future.
-
Amini, MR. ; Canu, S. ; Fischer, A. ; Guns, T. ; Kralj Novak, P. ; Tsoumakas, G. (Ed.)Quantifying the similarity or distance between time series, processes, signals, and trajectories is a task-specific problem and remains a challenge for many applications. The simplest measure, meaning the Euclidean distance, is often dismissed because of its sensitivity to noise and the curse of dimensionality. Therefore, elastic mappings (such as DTW, LCSS, ED) are often utilized instead. However, these measures are not metric functions, and more importantly, they must deal with the challenges intrinsic to point-to-point mappings, such as pathological alignment. In this paper, we adopt an object-similarity measure, namely Multiscale Intersection over Union (MIoU), for measuring the distance/similarity between time series. We call the new measure TS-MIoU. Unlike the most popular time series similarity measures, TS-MIoU does not rely on a point-to-point mapping, and therefore, circumvents all respective challenges. We show that TS-MIoU is indeed a metric function, especially that it holds the triangle inequality axiom, and therefore can take advantage of indexing algorithms without a lower bounding. We further show that its sensitivity to noise is adjustable, which makes it a strong alternative to the Euclidean distance while not suffering from the curse of dimensionality. Our proof-of-concept experiments on over 100 UCR datasets show that TS-MIoU can fill the gap between the unforgiving strictness of the ℓp-norm measures, and the mapping challenges of elastic measures.more » « lessFree, publicly-accessible full text available March 18, 2024
-
Rutkowski, L. ; Scherer, R. ; Korytkowski, M. ; Pedrycz W. ; Tadeusiewicz R. ; Zurada J. (Ed.)Solar flares not only pose risks to outer space technologies and astronauts’ well being, but also cause disruptions on earth to our high-tech, interconnected infrastructure our lives highly depend on. While a number of machine-learning methods have been proposed to improve flare prediction, none of them, to the best of our knowledge, have investigated the impact of outliers on the reliability and robustness of those models’ performance. In this study, we investigate the impact of outliers in a multivariate time series benchmark dataset, namely SWAN-SF, on flare prediction models, and test our hypothesis. That is, there exist outliers in SWAN-SF, removal of which enhances the performance of the prediction models on unseen datasets. We employ Isolation Forest to detect the outliers among the weaker flare instances. Several experiments are carried out using a large range of contamination rates which determine the percentage of present outliers. We assess the quality of each dataset in terms of its actual contamination using TimeSeriesSVC. In our best findings, we achieve a 279% increase in True Skill Statistic and 68% increase in Heidke Skill Score. The results show that overall a significant improvement can be achieved for flare prediction if outliers are detected and removed properly.more » « lessFree, publicly-accessible full text available January 24, 2024
-
The class-imbalance issue is intrinsic to many real-world machine learning tasks, particularly to the rare-event classification problems. Although the impact and treatment of imbalanced data is widely known, the magnitude of a metric’s sensitivity to class imbalance has attracted little attention. As a result, often the sensitive metrics are dismissed while their sensitivity may only be marginal. In this paper, we introduce an intuitive evaluation framework that quantifies metrics’ sensitivity to the class imbalance. Moreover, we reveal an interesting fact that there is a logarithmic behavior in metrics’ sensitivity meaning that the higher imbalance ratios are associated with the lower sensitivity of metrics. Our framework builds an intuitive understanding of the class-imbalance impact on metrics. We believe this can help avoid many common mistakes, specially the less-emphasized and incorrect assumption that all metrics’ quantities are comparable under different class-imbalance ratios.more » « lessFree, publicly-accessible full text available October 16, 2023
-
Over the past two decades, machine learning and deep learning techniques for forecasting solar flares have generated great impact due to their ability to learn from a high dimensional data space. However, lack of high quality data from flaring phenomena becomes a constraining factor for such tasks. One of the methods to tackle this complex problem is utilizing trained classifiers with multivariate time series of magnetic field parameters. In this work, we compare the exceedingly popular multivariate time series classifiers applying deep learning techniques with commonly used machine learning classifiers (i.e., SVM). We intend to explore the role of data augmentation on time series oriented flare prediction techniques, specifically the deep learning-based ones. We utilize four time series data augmentation techniques and couple them with selected multivariate time series classifiers to understand how each of them affects the outcome. In the end, we show that the deep learning algorithms as well as augmentation techniques improve our classifiers performance. The resulting classifiers’ performance after augmentation outplayed the traditional flare forecasting techniques.more » « less
-
Solar flare prediction is a central problem in space weather forecasting and has captivated the attention of a wide spectrum of researchers due to recent advances in both remote sensing as well as machine learning and deep learning approaches. The experimental findings based on both machine and deep learning models reveal significant performance improvements for task specific datasets. Along with building models, the practice of deploying such models to production environments under operational settings is a more complex and often time-consuming process which is often not addressed directly in research settings. We present a set of new heuristic approaches to train and deploy an operational solar flare prediction system for ≥M1.0-class flares with two prediction modes: full-disk and active region-based. In full-disk mode, predictions are performed on full-disk line-of-sight magnetograms using deep learning models whereas in active region-based models, predictions are issued for each active region individually using multivariate time series data instances. The outputs from individual active region forecasts and full-disk predictors are combined to a final full-disk prediction result with a meta-model. We utilized an equal weighted average ensemble of two base learners’ flare probabilities as our baseline meta learner and improved the capabilities of our two base learners by training a logistic regression model. The major findings of this study are: 1) We successfully coupled two heterogeneous flare prediction models trained with different datasets and model architecture to predict a full-disk flare probability for next 24 h, 2) Our proposed ensembling model, i.e., logistic regression, improves on the predictive performance of two base learners and the baseline meta learner measured in terms of two widely used metrics True Skill Statistic (TSS) and Heidke Skill Score (HSS), and 3) Our result analysis suggests that the logistic regression-based ensemble (Meta-FP) improves on the full-disk model (base learner) by ∼9% in terms TSS and ∼10% in terms of HSS. Similarly, it improves on the AR-based model (base learner) by ∼17% and ∼20% in terms of TSS and HSS respectively. Finally, when compared to the baseline meta model, it improves on TSS by ∼10% and HSS by ∼15%.more » « less