skip to main content

Search for: All records

Award ID contains: 1931657

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Visual sensitivity and body pigmentation are often shaped by both natural selection from the environment and sexual selection from mate choice. One way of quantifying the impact of the environment is by measuring how traits have changed after colonization of a novel habitat. To do this, we studiedPoecilia mexicanapopulations that have repeatedly adapted to extreme sulphidic (H2S‐containing) environments. We measured visual sensitivity using opsin gene expression, as well as body pigmentation, for populations in four independent drainages. Both visual sensitivity and body pigmentation showed significant parallel shifts towards greater medium‐wavelength sensitivity and reflectance in sulphidic populations. Altogether we found that sulphidic habitats select for differences in visual sensitivity and pigmentation. Shifts between habitats may be due to both differences in the water's spectral properties and correlated ecological changes.

    more » « less
  2. Abstract

    Our understanding of the mechanisms mediating the resilience of organisms to environmental change remains lacking. Heavy metals negatively affect processes at all biological scales, yet organisms inhabiting contaminated environments must maintain homeostasis to survive. Tar Creek in Oklahoma, USA, contains high concentrations of heavy metals and an abundance of Western mosquitofish (Gambusia affinis), though several fish species persist at lower frequency. To test hypotheses about the mechanisms mediating the persistence and abundance of mosquitofish in Tar Creek, we integrated ionomic data from seven resident fish species and transcriptomic data from mosquitofish. We predicted that mosquitofish minimize uptake of heavy metals more than other Tar Creek fish inhabitants and induce transcriptional responses to detoxify metals that enter the body, allowing them to persist in Tar Creek at higher density than species that may lack these responses. Tar Creek populations of all seven fish species accumulated heavy metals, suggesting mosquitofish cannot block uptake more efficiently than other species. We found population‐level gene expression changes between mosquitofish in Tar Creek and nearby unpolluted sites. Gene expression differences primarily occurred in the gill, where we found upregulation of genes involved with lowering transfer of metal ions from the blood into cells and mitigating free radicals. However, many differentially expressed genes were not in known metal response pathways, suggesting multifarious selective regimes and/or previously undocumented pathways could impact tolerance in mosquitofish. Our systems‐level study identified well characterized and putatively new mechanisms that enable mosquitofish to inhabit heavy metal‐contaminated environments.

    more » « less
  3. Abstract

    microRNAs (miRNAs) are post‐transcriptional regulators of gene expression and can play an important role in modulating organismal development and physiology in response to environmental stress. However, the role of miRNAs in mediating adaptation to diverse environments in natural study systems remains largely unexplored. Here, we characterized miRNAs and their expression inPoecilia mexicana, a species of small fish that inhabits both normal streams and extreme environments in the form of springs rich in toxic hydrogen sulphide (H2S). We found thatP. mexicanahas a similar number of miRNA genes as other teleosts. In addition, we identified a large population of mature miRNAs that were differentially expressed between locally adapted populations in contrasting habitats, indicating that miRNAs may contribute toP. mexicanaadaptation to sulphidic environments. In silico identification of differentially expressed miRNA‐mRNA pairs revealed, in the sulphidic environment, the downregulation of miRNAs predicted to target mRNAs involved in sulphide detoxification and cellular homeostasis, which are pathways essential for life in H2S‐rich springs. In addition, we found that predicted targets of upregulated miRNAs act in the mitochondria (16.6% of predicted annotated targets), which is the main site of H2S toxicity and detoxification, possibly modulating mitochondrial function. Together, the differential regulation of miRNAs between these natural populations suggests that miRNAs may be involved in H2S adaptation by promoting functions needed for survival and reducing functions affected by H2S. This study lays the groundwork for further research to directly demonstrate the role of miRNAs in adaptation to H2S. Overall, this study provides a critical stepping‐stone towards a comprehensive understanding of the regulatory mechanisms underlying the adaptive variation in gene expression in a natural system.

    more » « less
  4. Abstract

    Natural selection drives the evolution of traits to optimize organismal performance, but optimization of one aspect of performance can influence other aspects of performance. Here, we asked how phenotypic variation between locally adapted fish populations affects locomotion and ventilation, testing for functional trade‐offs and trait–performance correlations. Specifically, we investigated two populations of livebearing fish (Poecilia mexicana) that inhabit distinct habitat types (hydrogen‐sulphide‐rich springs and adjacent nonsulphidic streams). For each individual, we quantified different metrics of burst swimming during simulated predator attacks, steady swimming and gill ventilation. Coinciding with predictions, we documented significant population differences in all aspects of performance, with fish from sulphidic habitats exhibiting higher steady swimming performance and higher ventilation capacity, but slower burst swimming. There was a significant functional trade‐off between steady and burst swimming, but not between different aspects of locomotion and ventilation. Although our findings about population differences in locomotion performance largely parallel the results from previous studies, we provide novel insights about how morphological variation might impact ventilation and ultimately oxygen acquisition. Overall, our analyses provided insights into the functional consequences of previously documented phenotypic variation, which will help to disentangle the effects of different sources of selection that may coincide along complex environmental gradients.

    more » « less
  5. Free, publicly-accessible full text available August 1, 2024
  6. Resumen México es una región megadiversa con una historia geológica compleja, pero se desconoce el nivel de influencia de las barreras geográficas sobre las distribuciones de los peces dulceacuícolas. Este estudio examina las relaciones filogenéticas, a escala geográfica pequeña, de las especies del grupo de aletas cortas del subgénero Mollienesia (género Poecilia), un grupo de peces vivíparos ampliamente distribuidos en México. Se analizaron muestras de seis especies en más de 50 localidades, utilizando métodos filogenéticos y de redes de haplotipos, para evaluar la diversidad genética y precisar las distribuciones de especies en este grupo. Los resultados indican que las especies mexicanas se han diversificado a partir de múltiples invasiones independientes desde Mesoamérica. Se detectó estructura filogenética débil en dos especies distribuidas al norte del Eje Neovolcánico y una especie que atraviesa el Eje Neovolcánico, posiblemente debido a la ausencia de barreras fisiográficas, colonización reciente y altas tasas de dispersión entre regiones. En contraste, se detectaron niveles altos de estructura filogenética en tres especies distribuidas del Eje Neovolcánico, lo que refleja una presencia más prolongada en el área y la existencia de múltiples barreras fisiográficas que aislaron a las poblaciones. Este estudio identificó mecanismos que promueven la divergencia y la especiación, expandió el rango conocido de varias especies y resolvió incertidumbres taxonómicas de algunas poblaciones. 
    more » « less
    Free, publicly-accessible full text available January 1, 2024
  7. null (Ed.)
    Extreme environments test the limits of life; yet, some organisms thrive in harsh conditions. Extremophile lineages inspire questions about how organisms can tolerate physiochemical stressors and whether the repeated colonization of extreme environments is facilitated by predictable and repeatable evolutionary innovations. We identified the mechanistic basis underlying convergent evolution of tolerance to hydrogen sulfide (H 2 S)—a toxicant that impairs mitochondrial function—across evolutionarily independent lineages of a fish ( Poecilia mexicana , Poeciliidae) from H 2 S-rich springs. Using comparative biochemical and physiological analyses, we found that mitochondrial function is maintained in the presence of H 2 S in sulfide spring P. mexicana but not ancestral lineages from nonsulfidic habitats due to convergent adaptations in the primary toxicity target and a major detoxification enzyme. Genome-wide local ancestry analyses indicated that convergent evolution of increased H 2 S tolerance in different populations is likely caused by a combination of selection on standing genetic variation and de novo mutations. On a macroevolutionary scale, H 2 S tolerance in 10 independent lineages of sulfide spring fishes across multiple genera of Poeciliidae is correlated with the convergent modification and expression changes in genes associated with H 2 S toxicity and detoxification. Our results demonstrate that the modification of highly conserved physiological pathways associated with essential mitochondrial processes mediates tolerance to physiochemical stress. In addition, the same pathways, genes, and—in some instances—codons are implicated in H 2 S adaptation in lineages that span 40 million years of evolution. 
    more » « less