skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1932480

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the introduction of Cyber-Physical Systems (CPS) and Internet of Things (IoT) technologies, the automation industry is undergoing significant changes, particularly in improving production efficiency and reducing maintenance costs. Industrial automation applications often need to transmit time- and safety-critical data to closely monitor and control industrial processes. Several Ethernet-based fieldbus solutions, such as PROFINET IRT, EtherNet/IP, and EtherCAT, are widely used to ensure real-time communications in industrial automation systems. These solutions, however, commonly incorporate additional mechanisms to provide latency guarantees, making their interoperability a grand challenge. The IEEE 802.1 Time-Sensitive Networking (TSN) task group was formed to enhance and optimize IEEE 802.1 network standards, particularly for Ethernet-based networks. These solutions can be evolved and adapted for cross-industry scenarios, such as large-scale distributed industrial plants requiring multiple industrial entities to work collaboratively. This paper provides a comprehensive review of current advances in TSN standards for industrial automation. It presents the state-of-the-art IEEE TSN standards and discusses the opportunities and challenges of integrating TSN into the automation industry. Some promising research directions are also highlighted for applying TSN technologies to industrial automation applications. 
    more » « less
    Free, publicly-accessible full text available February 28, 2026
  2. Blockchain is a distributed and decentralized ledger for recording transactions. It is maintained and shared among the participating nodes by utilizing cryptographic primitives. A consensus protocol ensures that all nodes agree on a unique order in which records are appended. However, current blockchain solutions are facing scalability issues. Many methods, such as Off-chain and Directed Acyclic Graph (DAG) solutions, have been proposed to address the issue. However, they have inherent drawbacks, e.g., forming para-site chains. Performance, such as throughput and latency, is also important to a blockchain system. Sharding has emerged as a good candidate that can overcome both the scalability and performance problems in blockchain. To date, there is no systematic work that analyzes the sharding protocols. To bridge this gap, this paper provides a systematic and comprehensive review on blockchain sharding techniques. We first present a general design flow of sharding protocols and then discuss key design challenges. For each challenge, we analyze and compare the techniques in state-of-the-art solutions. Finally, we discuss several potential research directions in blockchain sharding. 
    more » « less