skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 28, 2026

Title: Time-Sensitive Networking (TSN) for Industrial Automation: Current Advances and Future Directions
With the introduction of Cyber-Physical Systems (CPS) and Internet of Things (IoT) technologies, the automation industry is undergoing significant changes, particularly in improving production efficiency and reducing maintenance costs. Industrial automation applications often need to transmit time- and safety-critical data to closely monitor and control industrial processes. Several Ethernet-based fieldbus solutions, such as PROFINET IRT, EtherNet/IP, and EtherCAT, are widely used to ensure real-time communications in industrial automation systems. These solutions, however, commonly incorporate additional mechanisms to provide latency guarantees, making their interoperability a grand challenge. The IEEE 802.1 Time-Sensitive Networking (TSN) task group was formed to enhance and optimize IEEE 802.1 network standards, particularly for Ethernet-based networks. These solutions can be evolved and adapted for cross-industry scenarios, such as large-scale distributed industrial plants requiring multiple industrial entities to work collaboratively. This paper provides a comprehensive review of current advances in TSN standards for industrial automation. It presents the state-of-the-art IEEE TSN standards and discusses the opportunities and challenges of integrating TSN into the automation industry. Some promising research directions are also highlighted for applying TSN technologies to industrial automation applications.  more » « less
Award ID(s):
1932480
PAR ID:
10567001
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Computing Surveys
Volume:
57
Issue:
2
ISSN:
0360-0300
Page Range / eLocation ID:
1 to 38
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Future tactical communications involves high data rate best effort traffic working alongside real-time traffic for time-critical applications with hard deadlines. Unavailable bandwidth and/or untimely responses may lead to undesired or even catastrophic outcomes. Ethernet-based communication systems are one of the major tactical network standards due to the higher bandwidth, better utilization, and ability to handle heterogeneous traffic. However, Ethernet suffers from inconsistent performance for jitter, latency and bandwidth under heavy loads. The emerging Time-Triggered Ethernet (TTE) solutions promise deterministic Ethernet performance, fault-tolerant topologies and real-time guarantees for critical traffic. In this paper we study the TTE protocol and build a TTTech TTE test bed to evaluate its performance. Through experimental study, the TTE protocol was observed to provide consistent high data rates for best effort messages, determinism with very low jitter for time-triggered messages, and fault-tolerance for minimal packet loss using redundant networking topologies. In addition, challenges were observed that presented a trade-off between the integration cycle and the synchronization overhead. It is concluded that TTE is a capable solution to support heterogeneous traffic in time-critical applications, such as aerospace systems (eg. airplanes, spacecraft, etc.), ground-based vehicles (eg. trains, buses, cars, etc), and cyber-physical systems (eg. smart-grids, IoT, etc.). 
    more » « less
  2. Programmable Logic Controllers are an established platform used throughout industrial automation, but rather poorly understood among researchers in the control systems community. This paper gives an overview of the state of the practice in industrial control systems while presenting a critical analysis of the dominant programming styles used in today's automation systems. We describe the patterns standardized loosely in IEC 61131-3 and, where there are ambiguities in the standard, realized in concrete vendor implementations. Ultimately, we suggest directions for further research towards enabling increasingly complex industrial control applications subject to the novel requirements of Industry 4.0 settings without compromising the safety and reliability guaranteed by the current industrial automation stack. 
    more » « less
  3. null (Ed.)
    With the continuous development of technologies, our society is approaching the next stage of industrialization. The Fourth Industrial Revolution also referred to as Industry 4.0, redefines the manufacturing system as a smart and connected machinery system with fully autonomous operation capability. Several advanced cutting-edge technologies, such as cyber-physical systems (CPS), the internet of things (IoT), and artificial intelligence, are believed to the essential components to realize Industry 4.0. In this paper, we focus on a comprehensive review of how artificial intelligence benefits Industry 4.0, including potential challenges and possible solutions. A panoramic introduction of neuromorphic computing is provided, which is one of the most promising and attractive research directions in artificial intelligence. Subsequently, we introduce the vista of the neuromorphic-powered Industry 4.0 system and survey a few research activities on applications of artificial neural networks for IoT. 
    more » « less
  4. na (Ed.)
    As the era of omics continues to expand with increasing ubiquity and success in both academia and industry, omics-based experiments are becoming commonplace in industrial biotechnology, including efforts to develop novel solutions in bioprocess optimization and cell line development. Omic technologies provide particularly valuable ‘observational’ insights for discovery science, especially in academic research and industrial R&D; however, biomanufacturing requires a different paradigm to unlock ‘actionable’ insights from omics. Here, we argue the value of omic experiments in biotechnology can be maximized with deliberate selection of omic approaches and forethought about analysis techniques. We describe important considerations when designing and implementing omic-based experiments and discuss how systems biology analysis strategies can enhance efforts to obtain actionable insights in mammalian-based biologics production. 
    more » « less
  5. Programmable Logic Controllers (PLCs) are an established platform, widely used throughout industrial automation but poorly understood among researchers. This paper gives an overview of the state of the practice, explaining why this settled technology persists throughout industry and presenting a critical analysis of the strengths and weaknesses of the dominant programming styles for today's PLC-based automation systems. We describe the software execution patterns that are standardized loosely in IEC 61131-3. We identify opportunities for improvements that would enable increasingly complex industrial automation applications while strengthening safety and reliability. Specifically, we propose deterministic, distributed programming models that embrace explicit timing, event-triggered computation, and improved security. 
    more » « less