skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1932619

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Here, an unobtrusive, adhesive‐integrated electrode array for continuous monitoring of stomach electric activity is introduced. This patient‐friendly, disposable peel‐and‐stick adhesive device represents an important advancement over existing arrays that require placement of each electrode individually and are thus also labor intensive and are in general more rigid and cumbersome. In comparison to other silver–silver chloride electrodes, this skin conformal array does not require gel and thus can withstand low impedance over the duration of long recordings. Interfacing these electrodes with miniaturized electronic recording and wireless telemetry systems has the potential to enable scalable population health opportunities to perform objective gastrointestinal assessment and optimization of treatment regimens. 
    more » « less
  2. Abstract Natural systems exhibit diverse behavior generated by complex interactions between their constituent parts. To characterize these interactions, we introduce Convergent Cross Sorting (CCS), a novel algorithm based on convergent cross mapping (CCM) for estimating dynamic coupling from time series data. CCS extends CCM by using the relative ranking of distances within state-space reconstructions to improve the prior methods’ performance at identifying the existence, relative strength, and directionality of coupling across a wide range of signal and noise characteristics. In particular, relative to CCM, CCS has a large performance advantage when analyzing very short time series data and data from continuous dynamical systems with synchronous behavior. This advantage allows CCS to better uncover the temporal and directional relationships within systems that undergo frequent and short-lived switches in dynamics, such as neural systems. In this paper, we validate CCS on simulated data and demonstrate its applicability to electrophysiological recordings from interacting brain regions. 
    more » « less