skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Adhesive‐Integrated Stretchable Silver‐Silver Chloride Electrode Array for Unobtrusive Monitoring of Gastric Neuromuscular Activity
Abstract Here, an unobtrusive, adhesive‐integrated electrode array for continuous monitoring of stomach electric activity is introduced. This patient‐friendly, disposable peel‐and‐stick adhesive device represents an important advancement over existing arrays that require placement of each electrode individually and are thus also labor intensive and are in general more rigid and cumbersome. In comparison to other silver–silver chloride electrodes, this skin conformal array does not require gel and thus can withstand low impedance over the duration of long recordings. Interfacing these electrodes with miniaturized electronic recording and wireless telemetry systems has the potential to enable scalable population health opportunities to perform objective gastrointestinal assessment and optimization of treatment regimens.  more » « less
Award ID(s):
1932619
PAR ID:
10453599
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
6
Issue:
5
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nanomaterial‐based stretchable electronics composed of conductive nanomaterials in elastomer can seamlessly integrate with human skin to imperceptibly capture electrophysiological signals. Despite the use of transfer printing to form embedded structures, it remains challenging to facilely and stably integrate conductive nanomaterials with thin, low‐modulus, adhesive elastomers. Here, a facile‐yet‐simple laser‐induced graphene (LIG)‐assisted patterning and transfer method is demonstrated to integrate patterned silver nanowires onto an ultra‐low modulus silicone adhesive as ultra‐conformal epidermal electrodes. The resulting thin epidermal electrodes of ≈50 µm exhibit a low sheet resistance (0.781 Ω sq−1), tissue‐like Young's modulus (0.53 MPa), strong self‐adhesion, and excellent breathability. The breathable electrodes dynamically conformed to the skin with low contact impedance allow for long‐term, high‐fidelity monitoring of electrophysiological signals in complex environments (even during exercise and heavy sweating). Moreover, the LIG‐assisted transfer can provide a robust interface to establish a stable connection between the soft electrodes and rigid hardware. The large‐scale fabrication further provides an eight‐channel electromyography system combined with a deep learning algorithm for gesture classification and recognition with remarkable accuracy (95.4%). The results from this study also provide design guidelines and fabrication methods of the next‐generation epidermal electronics for long‐term dynamic health monitoring, prosthetic control, and human‐robot collaborations. 
    more » « less
  2. Dense silver (Ag) cathodes with defined triple phase boundary (TPB between the interface of electrolyte, electrode, and gas) lengths (LTPB) and electrode areas (AELT) were fabricated by photolithography and E-beam evaporation over a proton conducting BaZr0.4Ce0.4Y0.1Yb0.1O3−δ (BZCYYb4411) electrolyte. A bi-layer lift-off resist method appears to be more versatile than a single layer lift-off resist method for successful patterned cathode fabrication. The electrochemical behaviors of the patterned Ag cathodes over the BZCYYb4411 electrolyte were tested by electrochemical impedance spectroscopy (EIS) at different temperatures in atmospheres with different concentrations of O2 and H2O. The results were processed using Distribution of Relaxation Times (DRT) and reaction order analyses and also fitted to equivalent circuits. The directions for future work on patterned electrodes with different LTPB and AELT and theoretical calculations to gain further insights into the kinetics and mechanism of the cathode oxygen reduction reaction (ORR) over proton conducting electrolytes are pointed out. 
    more » « less
  3. Abstract Implanted neural stimulation and recording devices hold vast potential to treat a variety of neurological conditions, but the invasiveness, complexity, and cost of the implantation procedure greatly reduce access to an otherwise promising therapeutic approach. To address this need, a novel electrode that begins as an uncured, flowable prepolymer that can be injected around a neuroanatomical target to minimize surgical manipulation is developed. Referred to as the Injectrode, the electrode conforms to target structures forming an electrically conductive interface which is orders of magnitude less stiff than conventional neuromodulation electrodes. To validate the Injectrode, detailed electrochemical and microscopy characterization of its material properties is performed and the feasibility of using it to stimulate the nervous system electrically in rats and swine is validated. The silicone‐metal‐particle composite performs very similarly to pure wire of the same metal (silver) in all measures, including exhibiting a favorable cathodic charge storage capacity (CSCC) and charge injection limits compared to the clinical LivaNova stimulation electrode and silver wire electrodes. By virtue of its simplicity, the Injectrode has the potential to be less invasive, more robust, and more cost‐effective than traditional electrode designs, which could increase the adoption of neuromodulation therapies for existing and new indications. 
    more » « less
  4. Semitransparent organic photovoltaics (ST‐OPVs) provide a potentially facile route for some applications in building integrated photovoltaics. One of the challenges in developing large‐scale, printable ST‐OPVs is to address the need for high‐performance and fully solution‐processed top electrodes, allowing the replacement of the evaporated thin metallic films (Ag, Au, and Al). Silver nanowire (AgNW) is considered a promising candidate for the substitution due to its excellent transparency, conductivity, and solution processability. Herein, a novel bimodal AgNW (AgNW‐BM) electrode is reported, comprising AgNWs of two different aspect ratios. It is shown that the AgNW‐BM film achieves lower sheet resistance and higher visible transmittance than each monodisperse AgNW film, respectively. Furthermore, ST‐OPVs based on PTB7‐Th:IEICO‐4F with AgNW‐BM top electrodes are fabricated, which can obtain a maximum power conversion efficiency (PCE) of 7.49% with an average visible transmittance (AVT) of 33%. The ST‐devices also demonstrate an enhanced reproducibility and excellent color‐rendering index of 90. In addition, the bimodal top electrode is successfully implemented in the PM6:Y6 system with a higher PCE of 9.79% and with an AVT of 23%, demonstrating the universality for various semiconductor systems. Our work provides a simple strategy to realize fully solution‐processed, highly efficient ST‐OPVs. 
    more » « less
  5. Abstract Over the past two decades, there has been a substantial increase in the number of synthetically useful transformations catalyzed by silver. Across the range of silver‐catalyzed reactions that have been reported, dinuclear species often emerge as a common feature, either as the (pre‐)catalysts themselves or as intermediates during catalysis. This Minireview explores the role of dinuclear silver complexes in homogeneous catalysis, which we hope will aid in the development of improved design principles for silver catalysts. 
    more » « less