Biopolymer foams manufactured using CO2 enables a novel intersection for economic, environmental, and ecological impact but limited CO2 solubility remains a challenge. PHBV has low solubility in CO2 while PCL has high CO2 solubility. In this paper, PCL is used to blend into PBHV. Both unfoamed and foamed blends are examined. Foaming the binary blends at two depressurization stages with subcritical CO2 as the blowing agent, produced open-cell and closed-cell foams with varying cellular architecture at different PHBV concentrations. Differential Scanning Calorimetry results showed that PHBV had some solubility in PCL and foams developed a PCL rich, PHBV rich and mixed phase. Scanning Electron Microscopy and pcynometry established cell size and density which reflected benefits of PCL presence. Acoustic performance showed limited benefits from foaming but mechanical performance of foams showed a significant impact from PHBV presence in PCL. Thermal performance reflected that foams were affected by the blend thermal conductivity, but the impact was significantly higher in the foams than in the unfoamed blends. The results provide a pathway to multifunctional performance in foams of high performance biopolymers such as PBHV through harnessing the CO2 miscibility of PCL.
more »
« less
Anisotropic Foams via Frontal Polymerization
Abstract The properties of foams, an important class of cellular solids, are most sensitive to the volume fraction and openness of its elementary compartments; size, shape, orientation, and the interconnectedness of the cells are other important design attributes. Control of these morphological traits would allow the tailored fabrication of useful materials. While approaches like ice templating have produced foams with elongated cells, there is a need for rapid, versatile, and energy‐efficient methods that also control the local order and macroscopic alignment of cellular elements. Here, a fast and convenient method is described to obtain anisotropic structural foams using frontal polymerization. Foams are fabricated by curing mixtures of dicyclopentadiene and a blowing agent via frontal ring‐opening metathesis polymerization (FROMP). The materials are characterized using microcomputed tomography (micro‐CT) and an image analysis protocol to quantify the morphological characteristics. The cellular structure, porosity, and hardness of the foams change with blowing agent, concentration, and resin viscosity. Moreover, a full factorial combination of variables is used to correlate each parameter with the structure of the obtained foams. The results demonstrate the controlled production of foams with specific morphologies using the simple and efficient method of frontal polymerization.
more »
« less
- Award ID(s):
- 1933932
- PAR ID:
- 10363144
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 34
- Issue:
- 8
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Frontal polymerization provides a rapid, economic, and environmentally friendly methodology to manufacture thermoset polymers and composites. Despite its efficiency and reduced environmental impact, the manufacturing method is underutilized due to the limited fundamental understanding of its dynamic control. This work reports the control and patterning of the front propagation in a dicyclopentadiene resin by immersion of phase‐changing polycaprolactone particles. Predictive and designed patterning is enabled by multiphysical numerical analyses, which reveal that the interplay between endothermic phase transition, exothermic chemical reaction, and heat exchange govern the temperature, velocity, and propagation path of the front via two different interaction regimes. To pattern the front, one can vary the size and spacing between the particles and increase the number of propagating fronts, resulting in tunable physical patterns formed due to front separation and merging near the particles. Both single‐ and double‐frontal polymerization experiments in an open mold are performed. The results confirm the front–particle interaction mechanisms and the shapes of the patterns explored numerically. The present study offers a fundamental understanding of frontal polymerization in the presence of heat‐absorbing second‐phase materials and proposes a potential one‐step manufacturing method for precisely patterned polymeric and composite materials without masks, molds, or printers.more » « less
-
Efficient Exothermic Press toward Ultrafast and Scalable Manufacturing of Complex Polymer CompositesAbstract Rapid and scalable production of high‐performance composites remains a key challenge in achieving sustainable manufacturing. Here, Exo‐press frontal polymerization (EPFP), a novel and transformative method for manufacturing fiber‐reinforced thermoset polymer composites, overcoming energy efficiency, scalability, and curing complex geometries, is introduced. Unlike conventional curing methods that require prolonged processing times and high energy, EPFP utilizes exothermic heat to reduce curing time from hours to minutes with minimal external energy. Combining exothermic heat with press molding, the novel EPFP enables the efficient fabrication of complex geometries, such as airfoil skin sections, with high fiber volume fractions (above 60%). In addition, EPFP is compatible with commercial off‐the‐shelf epoxy by integrating frontal resin, showcasing its versatility and adaptability for diverse industrial applications. Composites manufactured using EPFP exhibit superior thermomechanical properties while significantly reducing energy consumption by 80% and production costs by 40%. This makes it a sustainable and efficient solution for polymer composites manufacturing.more » « less
-
Abstract The use of visible light to drive polymerizations with spatiotemporal control offers a mild alternative to contemporary UV‐light‐based production of soft materials. In this spectral region, photoredox catalysis represents the most efficient polymerization method, yet it relies on the use of heavy‐atoms, such as precious metals or toxic halogens. Herein, spin‐orbit charge transfer intersystem crossing from boron dipyrromethene (BODIPY) dyads bearing twisted aromatic groups is shown to enable efficient visible light polymerizations in the absence of heavy‐atoms. A ≈5–15× increase in polymerization rate and improved photostability was achieved for twisted BODIPYs relative to controls. Furthermore, monomer polarity had a distinct effect on polymerization rate, which was attributed to charge transfer stabilization based on ultrafast transient absorption and phosphorescence spectroscopies. Finally, rapid and high‐resolution 3D printing with a green LED was demonstrated using the present photosystem.more » « less
-
Abstract Mixing multimetallic elements in hollow‐structured nanoparticles is a promising strategy for the synthesis of highly efficient and cost‐effective catalysts. However, the synthesis of multimetallic hollow nanoparticles is limited to two or three elements due to the difficulties in morphology control under the harsh alloying conditions. Herein, the rapid and continuous synthesis of hollow high‐entropy‐alloy (HEA) nanoparticles using a continuous “droplet‐to‐particle” method is reported. The formation of these hollow HEA nanoparticles is enabled through the decomposition of a gas‐blowing agent in which a large amount of gas is produced in situ to “puff” the droplet during heating, followed by decomposition of the metal salt precursors and nucleation/growth of multimetallic particles. The high active sites per mass ratio of such hollow HEA nanoparticles makes them promising candidates for energy and electrocatalysis applications. As a proof‐of‐concept, it is demonstrated that these materials can be applied as the cathode catalyst for Li–O2battery operations with a record‐high current density per catalyst mass loading of 2000 mA gcat.−1, as well as good stability and durable catalytic activity. This work offers a viable strategy for the continuous manufacturing of hollow HEA nanomaterials that can find broad applications in energy and catalysis.more » « less
An official website of the United States government
