Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Interaction is critical for data analysis and sensemaking. However, designing interactive physicalizations is challenging as it requires cross-disciplinary knowledge in visualization, fabrication, and electronics. Interactive physicalizations are typically produced in an unstructured manner, resulting in unique solutions for a specific dataset, problem, or interaction that cannot be easily extended or adapted to new scenarios or future physicalizations. To mitigate these challenges, we introduce a computational design pipeline to 3D print network physicalizations with integrated sensing capabilities. Networks are ubiquitous, yet their complex geometry also requires significant engineering considerations to provide intuitive, effective interactions for exploration. Using our pipeline, designers can readily produce network physicalizations supporting selection—the most critical atomic operation for interaction—by touch through capacitive sensing and computational inference. Our computational design pipeline introduces a new design paradigm by concurrently considering the form and interactivity of a physicalization into one cohesive fabrication workflow. We evaluate our approach using (i) computational evaluations, (ii) three usage scenarios focusing on general visualization tasks, and (iii) expert interviews. The design paradigm introduced by our pipeline can lower barriers to physicalization research, creation, and adoption.more » « less
-
Performing arts computing environments have received little attention in the educational sphere; yet, they offer opportunities for learners to validate their efforts, ideas, and skills through showcasing their work in a public-facing performance. In this work, we explore an out-of-school dance and computing educational program run by the organization, STEM From Dance. The organizational mission is to create an equitable learning experience for young women of color to engage with computing while exposing them to STEM careers. Through an analysis of eleven interviews with youth participants, instructors, and the executive director, we examine how the social, cultural, and political dimensions of the learning environment facilitate identity work in computing and dance. Our findings point to three primary activities used by the organization to promote equity: (1) providing psychological safety through a supportive community environment, (2) meaningfully engaging with learners’ social and cultural context through creative work with constructionist artifacts, and (3) actively promoting identity work as women of color in computing and STEM through both artifact work and community events. Applying the constructs of identity and psychological safety we explore the tensions and synergies of designing for equity in this performing arts and computing learning environment. We demonstrate how the seemingly contradictory elements of a high-stakes performance within a novice learning environment provides unique opportunities for supporting young women of color in computing, making them non-negotiable in the organization’s efforts to promote equity and inclusion. Our work illustrates how attending closely to the sociocultural dimensions in a constructionist learning environment provides lenses for navigating equity, identity work, and support for inclusive computing.more » « less
-
Our research collaborative has been exploring movement computing educational technology experiences. That is, we have been building tools that simultaneously support both movement and computing learning objectives at entry-level. We will demo two products in development. danceON is a domain-specific language and a web app that allows users to create interactive graphics overlaid on video from pre-recorded or live (webcam) sources. soft- WEAR is a solderless and breadboardless ecosystem using sensors, LEDs, and the Adafruit Trinket M0. It is designed to support a workflow from ideation, prototyping, and iteration to a durable, wearable final project embedded into clothing or accessories.more » « less
-
null (Ed.)Dance provides unique opportunities for embodied interdisciplinary learning experiences that can be personally and culturally relevant. danceON is a system that supports learners to leverage their body movement as they engage in artistic practices across data science, computing, and dance. The technology includes a Domain Specific Language (DSL) with declarative syntax and reactive behavior, a media player with pose detection and classification, and a web-based IDE. danceON provides a low-floor allowing users to bind virtual shapes to body positions in under three lines of code, while also enabling complex, dynamic animations that users can design working with conditionals and past position data. We developed danceON to support distance learning and deployed it in two consecutive cohorts of a remote, two-week summer camp for young women of color. We present our findings from an analysis of the experience and the resulting computational performances. The work identifies implications for how design can support learners’ expression across culturally relevant themes and examines challenges from the lens of usability of the computing language and technology.more » « less
-
This paper takes a theoretical approach to movement computing education for young learners, with a focus on middle grades (grades 6-8, ages 11-14). This age group is targeted as a lower bound because, while some elements of computational thinking may be available to still younger learners, there are abstractions involved in movement computation that pre-require a certain amount of formal operation, in the Piagetian sense. We outline a parallel foundation of key ideas in movement (specifically dance) and key ideas in computing (specifically data representations) at this age-appropriate level. We describe how these foundations might be laid down together early on so that they can later be integrated via the introduction of sensing and feedback technology. Concepts in movement and choreography are studied using words and bodies, as in traditional dance education, and later using computer simulations and motion capture. Data concepts are introduced first by appeal to general questions and later by specification to the movement of individual and collective joints and bodies.more » « less