skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1934358

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A sequence of torrential rainstorms pounded Pakistan in the summer of 2022, shattering records by massive margins (7 sigma). The severe socioeconomic damages underscore the urgency of identifying its dynamic drivers and relationship with human-induced climate change. Here, we find that the downpours were primarily initiated by the synoptic low-pressure systems, whose intensity and longevity far exceeded their counterparts in history as fueled by a historically-high cross-equatorial moisture transport over the Arabian Sea. The moisture transport has been trending upward since the 1960s and, in 2022, along with the anomalous easterly moisture influx caused by the combination of La Niña and negative Indian Ocean Dipole events, created a corridor of heavy rainfall extending from central India toward southern Pakistan. While it is not yet established whether the observed trend of the cross-equatorial moisture transport has exceeded natural variability, model-based analysis confirms that it is consistent with the fingerprint of anthropogenic climate warming and will raise the likelihood of such rare events substantially in the coming decades.

     
    more » « less
  2. Abstract

    Anthropogenic climate change has already affected drought severity and risk across many regions, and climate models project additional increases in drought risk with future warming. Historically, droughts are typically caused by periods of below‐normal precipitation and terminated by average or above‐normal precipitation. In many regions, however, soil moisture is projected to decrease primarily through warming‐driven increases in evaporative demand, potentially affecting the ability of negative precipitation anomalies to cause drought and positive precipitation anomalies to terminate drought. Here, we use climate model simulations from Phase Six of the Coupled Model Intercomparison Project (CMIP6) to investigate how different levels of warming (1, 2, and 3°C) affect the influence of precipitation on soil moisture drought in the Mediterranean and Western North America regions. We demonstrate that the same monthly precipitation deficits (25th percentile relative to a preindustrial baseline) at a global warming level of 2°C increase the probability of both surface and rootzone soil moisture drought by 29% in the Mediterranean and 32% and 6% in Western North America compared to the preindustrial baseline. Furthermore, the probability of a dry (25th percentile relative to a preindustrial baseline) surface soil moisture month given a high (75th percentile relative to a preindustrial baseline) precipitation month is 6 (Mediterranean) and 3 (Western North America) times more likely in a 2°C world compared to the preindustrial baseline. For these regions, warming will likely increase the risk of soil moisture drought during low precipitation periods while simultaneously reducing the efficacy of high precipitation periods to terminate droughts.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  3. Abstract

    Increases in population exposure to humid heat extremes in agriculturally-dependent areas of the world highlights the importance of understanding how the location and timing of humid heat extremes intersects with labor-intensive agricultural activities. Agricultural workers are acutely vulnerable to heat-related health and productivity impacts as a result of the outdoor and physical nature of their work and by compounding socio-economic factors. Here, we identify the regions, crops, and seasons when agricultural workers experience the highest hazard from extreme humid heat. Using daily maximum wet-bulb temperature data, and region-specific agricultural calendars and cropland area for 12 crops, we quantify the number of extreme humid heat days during the planting and harvesting seasons for each crop between 1979–2019. We find that rice, an extremely labor-intensive crop, and maize croplands experienced the greatest exposure to dangerous humid heat (integrating cropland area exposed to >27 °C wet-bulb temperatures), with 2001–2019 mean rice and maize cropland exposure increasing 1.8 and 1.9 times the 1979–2000 mean exposure, respectively. Crops in socio-economically vulnerable regions, including Southeast Asia, equatorial South America, the Indo-Gangetic Basin, coastal Mexico, and the northern coast of the Gulf of Guinea, experience the most frequent exposure to these extremes, in certain areas exceeding 60 extreme humid heat days per year when crops are being cultivated. They also experience higher trends relative to other world regions, with certain areas exceeding a 15 day per decade increase in extreme humid heat days. Our crop and location-specific analysis of extreme humid heat hazards during labor-intensive agricultural seasons can inform the design of policies and efforts to reduce the adverse health and productivity impacts on this vulnerable population that is crucial to the global food system.

     
    more » « less
  4. Abstract

    The US Southwest is in a drought crisis that has been developing over the past two decades, contributing to marked increases in burned forest areas and unprecedented efforts to reduce water consumption. Climate change has contributed to this ongoing decadal drought via warming that has increased evaporative demand and reduced snowpack and streamflows. However, on the supply side, precipitation has been low during the 21st century. Here, using simulations with an atmosphere model forced by imposed sea surface temperatures, we show that the 21st century shift to cooler tropical Pacific sea surface temperatures forced a decline in cool season precipitation that in turn drove a decline in spring to summer soil moisture in the southwest. We then project the near-term future out to 2040, accounting for plausible and realistic natural decadal variability of the Pacific and Atlantic Oceans and radiatively-forced change. The future evolution of decadal variability in the Pacific and Atlantic will strongly influence how wet or dry the southwest is in coming decades as a result of the influence on cool season precipitation. The worst-case scenario involves a continued cold state of the tropical Pacific and the development of a warm state of the Atlantic while the best case scenario would be a transition to a warm state of the tropical Pacific and the development of a cold state of the Atlantic. Radiatively-forced cool season precipitation reduction is strongest if future forced SST change continues the observed pattern of no warming in the equatorial Pacific cold tongue. Although this is a weaker influence on summer soil moisture than natural decadal variability, no combination of natural decadal variability and forced change ensures a return to winter precipitation or summer soil moisture levels as high as those in the final two decades of the 20th century.

     
    more » « less
  5. Abstract

    The impact of extreme heat on crop yields is an increasingly pressing issue given anthropogenic climate warming. However, some of the physical mechanisms involved in these impacts remain unclear, impeding adaptation-relevant insight and reliable projections of future climate impacts on crops. Here, using a multiple regression model based on observational data, we show that while extreme dry heat steeply reduced U.S. corn and soy yields, humid heat extremes had insignificant impacts and even boosted yields in some areas, despite having comparably high dry-bulb temperatures as their dry heat counterparts. This result suggests that conflating dry and humid heat extremes may lead to underestimated crop yield sensitivities to extreme dry heat. Rainfall tends to precede humid but not dry heat extremes, suggesting that multivariate weather sequences play a role in these crop responses. Our results provide evidence that extreme heat in recent years primarily affected yields by inducing moisture stress, and that the conflation of humid and dry heat extremes may lead to inaccuracy in projecting crop yield responses to warming and changing humidity.

     
    more » « less
  6. Abstract

    Simultaneous heatwaves affecting multiple regions (referred to as concurrent heatwaves) pose compounding threats to various natural and societal systems, including global food chains, emergency response systems, and reinsurance industries. While anthropogenic climate change is increasing heatwave risks across most regions, the interactions between warming and circulation changes that yield concurrent heatwaves remain understudied. Here, we quantify historical (1979–2019) trends in concurrent heatwaves during the warm season [May–September (MJJAS)] across the Northern Hemisphere mid- to high latitudes. We find a significant increase of ∼46% in the mean spatial extent of concurrent heatwaves and ∼17% increase in their maximum intensity, and an approximately sixfold increase in their frequency. Using self-organizing maps, we identify large-scale circulation patterns (300 hPa) associated with specific concurrent heatwave configurations across Northern Hemisphere regions. We show that observed changes in the frequency of specific circulation patterns preferentially increase the risk of concurrent heatwaves across particular regions. Patterns linking concurrent heatwaves across eastern North America, eastern and northern Europe, parts of Asia, and the Barents and Kara Seas show the largest increases in frequency (∼5.9 additional days per decade). We also quantify the relative contributions of circulation pattern changes and warming to overall observed concurrent heatwave day frequency trends. While warming has a predominant and positive influence on increasing concurrent heatwave frequency, circulation pattern changes have a varying influence and account for up to 0.8 additional concurrent heatwave days per decade. Identifying regions with an elevated risk of concurrent heatwaves and understanding their drivers is indispensable for evaluating projected climate risks on interconnected societal systems and fostering regional preparedness in a changing climate.

    Significance Statement

    Heatwaves pose a major threat to human health, ecosystems, and human systems. Simultaneous heatwaves affecting multiple regions can exacerbate such threats. For example, multiple food-producing regions simultaneously undergoing heat-related crop damage could drive global food shortages. We assess recent changes in the occurrence of simultaneous large heatwaves. Such simultaneous heatwaves are 7 times more likely now than 40 years ago. They are also hotter and affect a larger area. Their increasing occurrence is mainly driven by warming baseline temperatures due to global heating, but changes in weather patterns contribute to disproportionate increases over parts of Europe, the eastern United States, and Asia. Better understanding the drivers of weather pattern changes is therefore important for understanding future concurrent heatwave characteristics and their impacts.

     
    more » « less
  7. Abstract

    The boreal summer climate is of significant societal importance and is trending toward increased risks of extreme climate events such as heatwaves. The summer North Atlantic Oscillation, as the primary mode of atmospheric variability in the northern hemisphere, has been long considered lacking predictability on seasonal time scales. Here we show that the summer North Atlantic Oscillation is predictable with a 2‐month lead for the recent decades. The primary predictor is the March North Atlantic jet strength, which is correlated with the summer North Atlantic Oscillation index at a correlation coefficient of 0.66 over 1979–2018. Spring stratosphere‐troposphere coupling plays a critical role in this extended predictability from spring to summer, in contrast to the common knowledge that this dynamical coupling is relatively inactive outside the winter season. These results may bring sound prospects for summer seasonal prediction of boreal climate that benefits the energy and public health sectors.

     
    more » « less
  8. Abstract

    Extreme heat research has largely focused on dry‐heat, while humid‐heat that poses a substantial threat to human‐health remains relatively understudied. Using hourly high‐resolution ERA5 reanalysis and HadISD station data, we provide the first spatially comprehensive, global‐scale characterization of the magnitude, seasonal timing, and frequency of dry‐ and wet‐bulb temperature extremes and their trends. While the peak dry‐ and humid‐heat extreme occurrences often coincide, their timing differs in climatologically wet regions. Since 1979, dry‐ and humid‐heat extremes have become more frequent over most land regions, with the greatest increases in the tropics and Arctic. Humid‐heat extremes have increased disproportionately over populated regions (∼5.0 days per‐person per‐decade) relative to global land‐areas (∼3.6 days per‐unit‐land‐area per‐decade) and population exposure to humid‐heat has increased at a faster rate than to dry‐heat. Our study highlights the need for a multivariate approach to understand and mitigate future harm from heat stress in a warming world.

     
    more » « less
  9. Abstract

    Understanding the response of the large‐scale atmospheric circulation to climatic change remains a key challenge. Specifically, changes in the equator‐to‐pole temperature difference have been suggested to affect the midlatitudes, potentially leading to more persistent extreme weather, but a scientific consensus has not been established so far. Here we quantify summer weather persistence by applying a tracking algorithm to lower tropospheric vorticity and temperature fields to analyze changes in their propagation speeds. We find significant links between slower propagating weather systems and a weaker equator‐to‐pole temperature difference in observations and models. By end of the century, the propagation of temperature anomalies over midlatitude land is projected to decrease by −3%, regionally strongest in southern North America (−45%) under a high emission scenario (CMIP5 RCP8.5). Even higher decreases are found (−10%, −58%) in models which project a decreasing equator‐to‐pole temperature difference. Our findings provide evidence that hot summer weather might become longer‐lasting, bearing the risk of more persistent heat extremes.

     
    more » « less
  10. Abstract The increasing frequency of heatwaves over East Asia (EA) is impacting agriculture, water management, and people’s livelihood. However, the effect of humidity on high-temperature events has not yet been fully explored. Using observations and future climate change projections conducted with the latest generation of Earth System models, we examine the mechanisms of dry and moist heatwaves over EA. In the dry heatwave region, anticyclonic circulation has been amplified after the onset of heatwaves under the influence of the convergence of anomalous wave activity flux over northern EA, resulting in surface warming via adiabatic processes. In contrast, the moist heatwaves are triggered by the locally generated anticyclonic anomalies, with the surface warming amplified by cloud and water vapor feedback. Model simulations from phase six of the Coupled Model Intercomparison Project projected display intensification of dry heatwaves and increased moist heatwave days in response to projected increases in greenhouse gas concentrations. 
    more » « less