skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1934766

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The availability of large datasets is crucial for the development of new power system applications and tools; unfortunately, very few are publicly and freely available. The authors designed an end‐to‐end generative framework for the creation of synthetic bus‐level time‐series load data for transmission networks. The model is trained on a real dataset of over 70 Terabytes of synchrophasor measurements spanning multiple years. Leveraging a combination of principal component analysis and conditional generative adversarial network models, the developed scheme allows for the generation of data at varying sampling rates (up to a maximum of 30 samples per second) and ranging in length from seconds to years. The generative models are tested extensively to verify that they correctly capture the diverse characteristics of real loads. Finally, an opensource tool called LoadGAN is developed which gives researchers access to the fully trained generative models via a graphical interface.

     
    more » « less
  2. Accurate knowledge of transmission line parameters is essential for a variety of power system monitoring, protection, and control applications. The use of phasor measurement unit (PMU) data for transmission line parameter estimation (TLPE) is well-documented. However, existing literature on PMU-based TLPE implicitly assumes the measurement noise to be Gaussian. Recently, it has been shown that the noise in PMU measurements (especially in the current phasors) is better represented by Gaussian mixture models (GMMs), i.e., the noises are non-Gaussian. We present a novel approach for TLPE that can handle non-Gaussian noise in the PMU measurements. The measurement noise is expressed as a GMM, whose components are identified using the expectation-maximization (EM) algorithm. Subsequently, noise and parameter estimation is carried out by solving a maximum likelihood estimation problem iteratively until convergence. The superior performance of the proposed approach over traditional approaches such as least squares and total least squares as well as the more recently proposed minimum total error entropy approach is demonstrated by performing simulations using the IEEE 118-bus system as well as proprietary PMU data obtained from a U.S. power utility. 
    more » « less
  3. In this study, a machine learning based method is proposed for creating synthetic eventful phasor measurement unit (PMU) data under time-varying load conditions. The proposed method leverages generative adversarial networks to create quasi-steady states for the power system under slowly-varying load conditions and incorporates a framework of neural ordinary differential equations (ODEs) to capture the transient behaviors of the system during voltage oscillation events. A numerical example of a large power grid suggests that this method can create realistic synthetic eventful PMU voltage measurements based on the associated real PMU data without any knowledge of the underlying nonlinear dynamic equations. The results demonstrate that the synthetic voltage measurements have the key characteristics of real system behavior on distinct time scales. 
    more » « less