skip to main content


Search for: All records

Award ID contains: 1935444

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Many eukaryotic photosynthetic organisms enhance their carbon uptake by supplying concentrated CO2to the CO2-fixing enzyme Rubisco in an organelle called the pyrenoid. Ongoing efforts seek to engineer this pyrenoid-based CO2-concentrating mechanism (PCCM) into crops to increase yields. Here we develop a computational model for a PCCM on the basis of the postulated mechanism in the green algaChlamydomonas reinhardtii. Our model recapitulates allChlamydomonasPCCM-deficient mutant phenotypes and yields general biophysical principles underlying the PCCM. We show that an effective and energetically efficient PCCM requires a physical barrier to reduce pyrenoid CO2leakage, as well as proper enzyme localization to reduce futile cycling between CO2and HCO3. Importantly, our model demonstrates the feasibility of a purely passive CO2uptake strategy at air-level CO2, while active HCO3uptake proves advantageous at lower CO2levels. We propose a four-step engineering path to increase the rate of CO2fixation in the plant chloroplast up to threefold at a theoretical cost of only 1.3 ATP per CO2fixed, thereby offering a framework to guide the engineering of a PCCM into land plants.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Approximately one-third of the Earth’s photosynthetic CO 2 assimilation occurs in a pyrenoid, an organelle containing the CO 2 -fixing enzyme Rubisco. How constituent proteins are recruited to the pyrenoid and how the organelle’s subcompartments—membrane tubules, a surrounding phase-separated Rubisco matrix, and a peripheral starch sheath—are held together is unknown. Using the model alga Chlamydomonas reinhardtii , we found that pyrenoid proteins share a sequence motif. We show that the motif is necessary and sufficient to target proteins to the pyrenoid and that the motif binds to Rubisco, suggesting a mechanism for targeting. The presence of the Rubisco-binding motif on proteins that localize to the tubules and on proteins that localize to the matrix–starch sheath interface suggests that the motif holds the pyrenoid’s three subcompartments together. Our findings advance our understanding of pyrenoid biogenesis and illustrate how a single protein motif can underlie the architecture of a complex multilayered phase-separated organelle. 
    more » « less
  4. A quick guide to the pyrenoid. 
    more » « less
  5. Although cyanobacteria and algae represent a small fraction of the biomass of all primary producers, their photosynthetic activity accounts for roughly half of the daily CO2 fixation that occurs on Earth. These microorganisms are able to accomplish this feat by enhancing the activity of the CO2-fixing enzyme Rubisco using biophysical CO2 concentrating mechanisms (CCMs). Biophysical CCMs operate by concentrating bicarbonate and converting it into CO2 in a compartment that houses Rubisco (in contrast with other CCMs that concentrate CO2 via an organic intermediate, such as malate in the case of C4 CCMs). This activity provides Rubisco with a high concentration of its substrate, thereby increasing its reaction rate. The genetic engineering of a biophysical CCM into land plants is being pursued as a strategy to increase crop yields. This review focuses on the progress toward understanding the molecular components of cyanobacterial and algal CCMs, as well as recent advances toward engineering these components into land plants. 
    more » « less