skip to main content


Search for: All records

Award ID contains: 1935598

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract

    In this work, we show the computational potential of MEMS devices by predicting the dynamics of a 10th order nonlinear auto-regressive moving average (NARMA10) dynamical system. Modeling this system is considered complex due to its high nonlinearity and dependency on its previous values. To model the NARMA10 system, we used a reservoir computing scheme by utilizing one MEMS device as a reservoir, produced by the interaction of 100 virtual nodes. The virtual nodes are attained by sampling the input of the MEMS device and modulating this input using a random modulation mask. The interaction between virtual nodes within the system was produced through delayed feedback and temporal dependence. Using this approach, the MEMS device was capable of adequately capturing the NARMA10 response with a normalized root mean square error (NRMSE) = 6.18% and 6.43% for the training and testing sets, respectively. In practice, the MEMS device would be superior to simulated reservoirs due to its ability to perform this complex computing task in real time.

     
    more » « less
  2. This paper presents an energy-efficient classification framework that performs human activity recognition (HAR). Typically, HAR classification tasks require a computational platform that includes a processor and memory along with sensors and their interfaces, all of which consume significant power. The presented framework employs microelectromechanical systems (MEMS) based Continuous Time Recurrent Neural Network (CTRNN) to perform HAR tasks very efficiently. In a real physical implementation, we show that the MEMS-CTRNN nodes can perform computing while consuming power on a nano-watts scale compared to the micro-watts state-of-the-art hardware. We also confirm that this huge power reduction doesn't come at the expense of reduced performance by evaluating its accuracy to classify the highly cited human activity recognition dataset (HAPT). Our simulation results show that the HAR framework that consists of a training module, and a network of MEMS-based CTRNN nodes, provides HAR classification accuracy for the HAPT that is comparable to traditional CTRNN and other Recurrent Neural Network (RNN) implantations. For example, we show that the MEMS-based CTRNN model average accuracy for the worst-case scenario of not using pre-processing techniques, such as quantization, to classify 5 different activities is 77.94% compared to 78.48% using the traditional CTRNN. 
    more » « less
  3. null (Ed.)
    The goal of this paper is to provide a novel computing approach that can be used to reduce the power consumption, size, and cost of wearable electronics. To achieve this goal, the use of microelectromechanical systems (MEMS) sensors for simultaneous sensing and computing is introduced. Specifically, by enabling sensing and computing locally at the MEMS sensor node and utilizing the usually unwanted pull in/out hysteresis, we may eliminate the need for cloud computing and reduce the use of analog-to-digital converters, sampling circuits, and digital processors. As a proof of concept, we show that a simulation model of a network of three commercially available MEMS accelerometers can classify a train of square and triangular acceleration signals inherently using pull-in and release hysteresis. Furthermore, we develop and fabricate a network with finger arrays of parallel plate actuators to facilitate coupling between MEMS devices in the network using actuating assemblies and biasing assemblies, thus bypassing the previously reported coupling challenge in MEMS neural networks. 
    more » « less