skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulation for a Mems-Based CTRNN Ultra-Low Power Implementation of Human Activity Recognition
This paper presents an energy-efficient classification framework that performs human activity recognition (HAR). Typically, HAR classification tasks require a computational platform that includes a processor and memory along with sensors and their interfaces, all of which consume significant power. The presented framework employs microelectromechanical systems (MEMS) based Continuous Time Recurrent Neural Network (CTRNN) to perform HAR tasks very efficiently. In a real physical implementation, we show that the MEMS-CTRNN nodes can perform computing while consuming power on a nano-watts scale compared to the micro-watts state-of-the-art hardware. We also confirm that this huge power reduction doesn't come at the expense of reduced performance by evaluating its accuracy to classify the highly cited human activity recognition dataset (HAPT). Our simulation results show that the HAR framework that consists of a training module, and a network of MEMS-based CTRNN nodes, provides HAR classification accuracy for the HAPT that is comparable to traditional CTRNN and other Recurrent Neural Network (RNN) implantations. For example, we show that the MEMS-based CTRNN model average accuracy for the worst-case scenario of not using pre-processing techniques, such as quantization, to classify 5 different activities is 77.94% compared to 78.48% using the traditional CTRNN.  more » « less
Award ID(s):
1935641 1935598
PAR ID:
10346980
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Digital Health
Volume:
3
ISSN:
2673-253X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    There is an increasing demand for performing machine learning tasks, such as human activity recognition (HAR) on emerging ultra-low-power internet of things (IoT) platforms. Recent works show substantial efficiency boosts from performing inference tasks directly on the IoT nodes rather than merely transmitting raw sensor data. However, the computation and power demands of deep neural network (DNN) based inference pose significant challenges when executed on the nodes of an energy-harvesting wireless sensor network (EH-WSN). Moreover, managing inferences requiring responses from multiple energy-harvesting nodes imposes challenges at the system level in addition to the constraints at each node. This paper presents a novel scheduling policy along with an adaptive ensemble learner to efficiently perform HAR on a distributed energy-harvesting body area network. Our proposed policy, Origin, strategically ensures efficient and accurate individual inference execution at each sensor node by using a novel activity-aware scheduling approach. It also leverages the continuous nature of human activity when coordinating and aggregating results from all the sensor nodes to improve final classification accuracy. Further, Origin proposes an adaptive ensemble learner to personalize the optimizations based on each individual user. Experimental results using two different HAR data-sets show Origin, while running on harvested energy, to be at least 2.5% more accurate than a classical battery-powered energy aware HAR classifier continuously operating at the same average power. 
    more » « less
  2. null (Ed.)
    Human activity recognition (HAR) is growing in popularity due to its wide-ranging applications in patient rehabilitation and movement disorders. HAR approaches typically start with collecting sensor data for the activities under consideration and then develop algorithms using the dataset. As such, the success of algorithms for HAR depends on the availability and quality of datasets. Most of the existing work on HAR uses data from inertial sensors on wearable devices or smartphones to design HAR algorithms. However, inertial sensors exhibit high noise that makes it difficult to segment the data and classify the activities. Furthermore, existing approaches typically do not make their data available publicly, which makes it difficult or impossible to obtain comparisons of HAR approaches. To address these issues, we present wearable HAR (w-HAR) which contains labeled data of seven activities from 22 users. Our dataset’s unique aspect is the integration of data from inertial and wearable stretch sensors, thus providing two modalities of activity information. The wearable stretch sensor data allows us to create variable-length segment data and ensure that each segment contains a single activity. We also provide a HAR framework to use w-HAR to classify the activities. To this end, we first perform a design space exploration to choose a neural network architecture for activity classification. Then, we use two online learning algorithms to adapt the classifier to users whose data are not included at design time. Experiments on the w-HAR dataset show that our framework achieves 95% accuracy while the online learning algorithms improve the accuracy by as much as 40%. 
    more » « less
  3. Human activity recognition (HAR) has attracted significant research interest due to its applications in health monitoring and patient rehabilitation. Recent research on HAR focuses on using smartphones due to their widespread use. However, this leads to inconvenient use, limited choice of sensors and inefficient use of resources, since smartphones are not designed for HAR. This paper presents the first HAR framework that can perform both online training and inference. The proposed framework starts with a novel technique that generates features using the fast Fourier and discrete wavelet transforms of a textile-based stretch sensor and accelerometer data. Using these features, we design a neural network classifier which is trained online using the policy gradient algorithm. Experiments on a low power IoT device (TI-CC2650 MCU) with nine users show 97.7% accuracy in identifying six activities and their transitions with less than 12.5 mW power consumption. 
    more » « less
  4. Hedden, Abigail S; Mazzaro, Gregory J (Ed.)
    Human activity recognition (HAR) with radar-based technologies has become a popular research area in the past decade. However, the objective of these studies are often to classify human activity for anyone; thus, models are trained using data spanning as broad a swath of people and mobility profiles as possible. In contrast, applications of HAR and gait analysis to remote health monitoring require characterization of the person-specific qualities of a person’s activities and gait, which greatly depends on age, health and agility. In fact, the speed or agility with which a person moves can be an important health indicator. In this study, we propose a multi-input multi-task deep learning framework to simultaneously learn a person’s activity and agility. In this initial study, we consider three different agility states: slow, nominal, and fast. It is shown that joint learning of agility and activity improves the classification accuracy for both activity and agility recognition tasks. To the best of our knowledge, this study is the first work considering both agility characterization and personalized activity recognition using RF sensing. 
    more » « less
  5. Recent advances in machine learning and deep neural networks have led to the realization of many important applications in the area of personalized medicine. Whether it is detecting activities of daily living or analyzing images for cancerous cells, machine learning algorithms have become the dominant choice for such emerging applications. In particular, the state-of-the-art algorithms used for human activity recognition (HAR) using wearable inertial sensors utilize machine learning algorithms to detect health events and to make predictions from sensor data. Currently, however, there remains a gap in research on whether or not and how activity recognition algorithms may become the subject of adversarial attacks. In this paper, we take the first strides on (1) investigating methods of generating adversarial example in the context of HAR systems; (2) studying the vulnerability of activity recognition models to adversarial examples in feature and signal domain; and (3) investigating the effects of adversarial training on HAR systems. We introduce Adar, a novel computational framework for optimization-driven creation of adversarial examples in sensor-based activity recognition systems. Through extensive analysis based on real sensor data collected with human subjects, we found that simple evasion attacks are able to decrease the accuracy of a deep neural network from 95.1% to 3.4% and from 93.1% to 16.8% in the case of a convolutional neural network. With adversarial training, the robustness of the deep neural network increased on the adversarial examples by 49.1% in the worst case while the accuracy on clean samples decreased by 13.2%. 
    more » « less