Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In recent years, driven by Industry 4.0 wave, academic research has focused on the science, engineering, and enabling technologies for intelligent and cyber manufacturing. Using a network science and data mining-based Keyword Co-occurrence Network (KCN) methodology, this work analyzes the trends in data science topics in the manufacturing literature over the past two decades to inform the researchers, educators, industry leaders of knowledge trends in intelligent manufacturing. It studies the evolution of research topics and methods in data science, Internet of Things (IoT), cloud computing, and cyber manufacturing. The KCN methodology is applied to systematically analyze the keywords collected from 84,041 papers published in top-tier manufacturing journals between 2000 and 2020. It is not practically feasible to review this large body of literature through tradition manual approaches like systematic review and scoping review to discover insights. The results of network modeling and data analysis reveal important knowledge components and structure of the intelligent and cyber manufacturing literature, implicit the research interests switch and provide the insights for industry development. This paper maps the high frequency keywords in the recent literature to nine pillars of Industry 4.0 to help manufacturing community identify research and education directions for emerging technologies in intelligent manufacturing.more » « less
-
In recent years, driven by Industry 4.0 wave, academic research has focused on the science, engineering, and enabling technologies for intelligent and cyber manufacturing. Using a network science and data mining-based Keyword Co-occurrence Network (KCN) methodology, this work analyzes the trends in data science topics in the manufacturing literature over the past two decades to inform the researchers, educators, industry leaders of knowledge trends in intelligent manufacturing. It studies the evolution of research topics and methods in data science, Internet of Things (IoT), cloud computing, and cyber manufacturing. The KCN methodology is applied to systematically analyze the keywords collected from 84,041 papers published in top-tier manufacturing journals between 2000 and 2020. It is not practically feasible to review this large body of literature through tradition manual approaches like systematic review and scoping review to discover insights. The results of network modeling and data analysis reveal important knowledge components and structure of the intelligent and cyber manufacturing literature, implicit the research interests switch and provide the insights for industry development. This paper maps the high frequency keywords in the recent literature to nine pillars of Industry 4.0 to help manufacturing community identify research and education directions for emerging technologies in intelligent manufacturing.more » « less
-
IMPEL is a transformative workforce education and training program that addresses the current and projected skills gaps and requirements in data science in the US manufacturing sector. The mission of IMPEL is to facilitate lifelong learning for the production engineering STEM workforce through designing sustainable, pedagogically proven data science curricula via modular courses with interactive online learning labs and experiential project-based learning. The planned tasks for IMPEL include an online curriculum design and development targeting professionals, undergraduates and community college students interested in advancing their skills in data science in the context of Industry 4.0 and intelligent manufacturing. The project team has accomplished several main tasks towards the goals of the project in Year 1, to be detailed in this paper.more » « less
-
Manufacturing has adopted technologies such as automation, robotics, industrial Internet of Things (IoT), and big data analytics to improve productivity, efficiency, and capabilities in the production environment. Modern manufacturing workers not only need to be adept at the traditional manufacturing technologies but also ought to be trained in the advanced data-rich computer-automated technologies. This study analyzes the data science and analytics (DSA) skills gap in today’s manufacturing workforce to identify the critical technical skills and domain knowledge required for data science and intelligent manufacturing-related jobs that are highly in-demand in today’s manufacturing industry. The gap analysis conducted in this paper on Emsi job posting and profile data provides insights into the trends in manufacturing jobs that leverage data science, automation, cyber, and sensor technologies. These insights will be helpful for educators and industry to train the next generation manufacturing workforce. The main contribution of this paper includes (1) presenting the overall trend in manufacturing job postings in the U.S., (2) summarizing the critical skills and domain knowledge in demand in the manufacturing sector, (3) summarizing skills and domain knowledge reported by manufacturing job seekers, (4) identifying the gaps between demand and supply of skills and domain knowledge, and (5) recognize opportunities for training and upskilling workforce to address the widening skills and knowledge gap.more » « less
An official website of the United States government

Full Text Available