skip to main content


Title: NSF: Integrative Manufacturing and Production Engineering Education Leveraging Data Science Program (IMPEL)
IMPEL is a transformative workforce education and training program that addresses the current and projected skills gaps and requirements in data science in the US manufacturing sector. The mission of IMPEL is to facilitate lifelong learning for the production engineering STEM workforce through designing sustainable, pedagogically proven data science curricula via modular courses with interactive online learning labs and experiential project-based learning. The planned tasks for IMPEL include an online curriculum design and development targeting professionals, undergraduates and community college students interested in advancing their skills in data science in the context of Industry 4.0 and intelligent manufacturing. The project team has accomplished several main tasks towards the goals of the project in Year 1, to be detailed in this paper.  more » « less
Award ID(s):
1935646
NSF-PAR ID:
10299103
Author(s) / Creator(s):
Date Published:
Journal Name:
2021 ASEE Virtual Annual Conference Content Access,
Page Range / eLocation ID:
https://peer.asee.org/37530
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a project framework for the development of an adaptive learning environment to provide a wide range of students with the skills necessary to work in high value manufacturing (HVM) aimed at the energy industry. More specifically, it discusses a HVM certificate program being developed at Houston Community College (HCC) in collaboration with Texas A&M University (TAMU). The aim of the project is to create a sustainable certificate program in HVM that provides multiple pathways for community college students while meeting the critical workforce needs of a vital industry in Texas. The novelty of the certificate program includes innovative pedagogical methods, such as competency-based learning and skills need assessment and provision through online learning modules is presented; this allows students an adaptive and personalized education in this needed area. Upon completion of the certificate program, the community college students will have multiple pathways including: a) an A.S. at the Community College; b) transfer to four year institution; and c) return to industry to join the workforce. By incorporating a new co-educational paradigm between the community college and the university, as opposed to traditional articulation agreements, this project provides a novel pathway for community college students to transition to a four-year degree program. It also incorporates a new method for trying to ensure that community college students who matriculate to partner 4-year institutions receive reverse transfer credit for their associate degrees at their home community college. Furthermore, HVM modules are developed for high school students that are aligned with the Next Generation Science Standards. 
    more » « less
  2. The objective of this paper is to outline the details of a recently-funded National Science Foundation (NSF) Advanced Technological Education (ATE) project that aims to educate and enable the current and future manufacturing workforce to operate in an Industry 4.0 environment. Additionally, the startup procedures involved, the major ongoing activities during year-one, and preliminary impressions and lessons learned will be elaborated as well. Industry 4.0 refers to the ongoing reformation of advanced manufacturing (Operation Technologies - OT) enabled by advances in automation/data (Information Technologies - IT). Cyber-enabled smart manufacturing is a multidisciplinary approach that integrates the manufacturing process, its monitoring/control, data science, cyber-physical systems, and cloud computing to drive manufacturing operations. This is further propelled by the dissolution of boundaries separating IT and OT, presenting optimization opportunities not just at a machine-level, but at the plant/enterprise-levels. This so-called fourth industrial revolution is rapidly percolating the discrete and continuous manufacturing industry. It is therefore critical for the current and future US workforce to be cognizant and capable of such interdisciplinary domain knowledge and skills. To meet this workforce need, this project will develop curricula, personnel and communities in cyber-enabled smart manufacturing. The key project components will include: (i) Curriculum Road-Mapping and Implementation – one that integrates IT and OT to broaden the educational experience and employability via road-mapping workshops, and then to develop/implement curricula, (ii) Interdisciplinary Learning Experiences – through collaborative special-projects courses, industry internships and research experiences, (iii) Pathways to Industry 4.0 Careers – to streamline career pathways to enter Industry 4.0 careers, and to pursue further education, and (iv) Faculty Development – continuous improvement via professional development workshops and faculty development leaves. It is expected that this project will help define and chart-out the capabilities demanded from the next-generation workforce to fulfill the call of Industry 4.0, and the curricular ingredients necessary to train and empower them. This will help create an empowered workforce well-suited for Industry 4.0 careers in cyber-enabled smart manufacturing. The collaborative research team’s experience so far in starting up and establishing the project has further shed light on some of the essentials and practicalities needed for achieving the grand vision of enabling the manufacturing workforce for the future. Altogether, the experience and lessons learned during the year-one implementation has provided a better perception of what is needed for imparting a broader impact through this project. 
    more » « less
  3. The objective of this paper is to outline the details of a recently-funded National Science Foundation (NSF) Advanced Technological Education (ATE) project that aims to educate and enable the current and future manufacturing workforce to operate in an Industry 4.0 environment. Additionally, the startup procedures involved, the major ongoing activities during year-one, and preliminary impressions and lessons learned will be elaborated as well. Industry 4.0 refers to the ongoing reformation of advanced manufacturing (Operation Technologies - OT) enabled by advances in automation/data (Information Technologies - IT). Cyber-enabled smart manufacturing is a multidisciplinary approach that integrates the manufacturing process, its monitoring/control, data science, cyber-physical systems, and cloud computing to drive manufacturing operations. This is further propelled by the dissolution of boundaries separating IT and OT, presenting optimization opportunities not just at a machine-level, but at the plant/enterprise-levels. This so-called fourth industrial revolution is rapidly percolating the discrete and continuous manufacturing industry. It is therefore critical for the current and future US workforce to be cognizant and capable of such interdisciplinary domain knowledge and skills. To meet this workforce need, this project will develop curricula, personnel and communities in cyber-enabled smart manufacturing. The key project components will include: (i) Curriculum Road-Mapping and Implementation – one that integrates IT and OT to broaden the educational experience and employability via road-mapping workshops, and then to develop/implement curricula, (ii) Interdisciplinary Learning Experiences – through collaborative special-projects courses, industry internships and research experiences, (iii) Pathways to Industry 4.0 Careers – to streamline career pathways to enter Industry 4.0 careers, and to pursue further education, and (iv) Faculty Development – continuous improvement via professional development workshops and faculty development leaves. It is expected that this project will help define and chart-out the capabilities demanded from the next-generation workforce to fulfill the call of Industry 4.0, and the curricular ingredients necessary to train and empower them. This will help create an empowered workforce well-suited for Industry 4.0 careers in cyber-enabled smart manufacturing. The collaborative research team’s experience so far in starting up and establishing the project has further shed light on some of the essentials and practicalities needed for achieving the grand vision of enabling the manufacturing workforce for the future. Altogether, the experience and lessons learned during the year-one implementation has provided a better perception of what is needed for imparting a broader impact through this project. 
    more » « less
  4. Research shows that there is a growing need for skilled workers in the area of advanced manufacturing; this refers to making use of new technologies and advanced processes to produce products that have high value. More importantly, U.S. government employment data reveals that there is lack of supply of skilled workers in the manufacturing sector. Furthermore, it has also been widely cited in industrial literature that there is a concern regarding the job readiness of fresh college graduates and the gaps in skills sets needed to be successful in an industrial setting, especially in the engineering or manufacturing fields. One approach to bridge the skills gap is to provide customized continuing education to current the workforce as per the industry need. This paper presents a case study of such customized continuing education offered by Texas A&M University for oil and gas industry in Houston, Texas. Specifically, as a part of National Science Foundation Advanced Technological Education project, two professional development sessions were organized in the summer of 2018 in Houston targeting the energy industry. Both programs were two-days long and focused on two key aspects of high value manufacturing: manufacturing operations excellence and manufacturing quality excellence. The professional development sessions were focused on materials and inventory planning, production economics, manufacturing quality, non-destructive evaluation, statistical process control, and lean/ sixsigma. The continuing education programs and course materials were developed based on the feedback from the industry advisory board for the Manufacturing Center of Excellence at Houston Community College, which is a collaborating partner on the ATE Grant. As a part of assessment of the programs, industry participants in the both sessions were given comprehensive surveys asking for their feedback on the applicability of the educational sessions. Overall, the participants rated the sessions very highly on the organization and the relevancy of the program topics and learning materials. The participants also felt that they learned new information through these programs. 
    more » « less
  5. ASEE Manufacturing Division (Ed.)
    The manufacturing workspace and the technician workforce that supports that space tomorrow is an important issue to deal with today. As Industry 4.0 is absorbed into manufacturing facilities around the country, engineering technicians working in these facilities adjust to make tomorrow today. The National Science Foundation has supported the Florida Advanced Technological Education Center (FLATE) contiguously since 2004. FLATE's intent is to craft a manufacturing workforce that makes Florida manufacturers globally competitive. FLATE crafted and the Florida Department of Education now supported two-year Engineering Technology degree (A.S. ET) is the vehicle for manufacturing education in Florida. The degree is offered in over 85% of the colleges in the Florida College System (FCS) and has over 2,000 students enrolled statewide. The current NSF-supported project is to conduct an I4.0-focused Caucus of manufacturers and ET degree college faculty to collectively identify skill issues that will affect manufacturing production efficiency and product reliability. The project team initially used the nine Industry 4.0 (I4.0) technology areas identified by the Boston Consulting Group and selected four that will directly impact starting technicians working in companies that are already implementing Industry 4.0 technologies: (1) Autonomous Robots, (2) Simulation, (3) Industrial Internet of Things and (4) Additive/Subtractive Manufacturing and Advanced Materials. Technician skills are defined as those needed to set up, operate, troubleshoot, and maintain production and process equipment. Specific skills that fall in the I4.0 technologies identified as relevant for starting technicians were defined to be those that will be needed in the next 3-5 years. Initial questionnaire responses and subsequent data analysis detail are provided. Identified skills gaps as recognized by the manufacturers and faculty are provided and discussed. 
    more » « less