skip to main content

Search for: All records

Award ID contains: 1936187

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivation

    Site concordance factors (sCFs) have become a widely used way to summarize discordance in phylogenomic datasets. However, the original version of sCFs was calculated by sampling a quartet of tip taxa and then applying parsimony-based criteria for discordance. This approach has the potential to be strongly affected by multiple hits at a site (homoplasy), especially when substitution rates are high or taxa are not closely related.


    Here, we introduce a new method for calculating sCFs. The updated version uses likelihood to generate probability distributions of ancestral states at internal nodes of the phylogeny. By sampling from the states at internal nodes adjacent to a given branch, this approach substantially reduces—but does not abolish—the effects of homoplasy and taxon sampling.

    Availability and implementation

    Updated sCFs are implemented in IQ-TREE 2.2.2. The software is freely available at

    Supplementary information

    Supplementary information is available at Bioinformatics online.

    more » « less
  2. Abstract

    Phylogenomics has revealed the remarkable frequency with which introgression occurs across the tree of life. These discoveries have been enabled by the rapid growth of methods designed to detect and characterize introgression from whole-genome sequencing data. A large class of phylogenomic methods makes use of data across species to infer and characterize introgression based on expectations from the multispecies coalescent. These methods range from simple tests, such as the D-statistic, to model-based approaches for inferring phylogenetic networks. Here, we provide a detailed overview of the various signals that different modes of introgression are expected leave in the genome, and how current methods are designed to detect them. We discuss the strengths and pitfalls of these approaches and identify areas for future development, highlighting the different signals of introgression, and the power of each method to detect them. We conclude with a discussion of current challenges in inferring introgression and how they could potentially be addressed.

    more » « less
  3. Abstract

    Phylogenetics has long relied on the use of orthologs, or genes related through speciation events, to infer species relationships. However, identifying orthologs is difficult because gene duplication can obscure relationships among genes. Researchers have been particularly concerned with the insidious effects of pseudoorthologs—duplicated genes that are mistaken for orthologs because they are present in a single copy in each sampled species. Because gene tree topologies of pseudoorthologs may differ from the species tree topology, they have often been invoked as the cause of counterintuitive results in phylogenetics. Despite these perceived problems, no previous work has calculated the probabilities of pseudoortholog topologies or has been able to circumscribe the regions of parameter space in which pseudoorthologs are most likely to occur. Here, we introduce a model for calculating the probabilities and branch lengths of orthologs and pseudoorthologs, including concordant and discordant pseudoortholog topologies, on a rooted three-taxon species tree. We show that the probability of orthologs is high relative to the probability of pseudoorthologs across reasonable regions of parameter space. Furthermore, the probabilities of the two discordant topologies are equal and never exceed that of the concordant topology, generally being much lower. We describe the species tree topologies most prone to generating pseudoorthologs, finding that they are likely to present problems to phylogenetic inference irrespective of the presence of pseudoorthologs. Overall, our results suggest that pseudoorthologs are unlikely to mislead inferences of species relationships under the biological scenarios considered here.[Birth–death model; orthologs; paralogs; phylogenetics.]

    more » « less
  4. Men have always had children at an older age than women, even among diverse populations, but this age gap has recently shrunk. 
    more » « less
  5. Townsend, Jeffrey (Ed.)
    Abstract Traditionally, single-copy orthologs have been the gold standard in phylogenomics. Most phylogenomic studies identify putative single-copy orthologs using clustering approaches and retain families with a single sequence per species. This limits the amount of data available by excluding larger families. Recent advances have suggested several ways to include data from larger families. For instance, tree-based decomposition methods facilitate the extraction of orthologs from large families. Additionally, several methods for species tree inference are robust to the inclusion of paralogs and could use all of the data from larger families. Here, we explore the effects of using all families for phylogenetic inference by examining relationships among 26 primate species in detail and by analyzing five additional data sets. We compare single-copy families, orthologs extracted using tree-based decomposition approaches, and all families with all data. We explore several species tree inference methods, finding that identical trees are returned across nearly all subsets of the data and methods for primates. The relationships among Platyrrhini remain contentious; however, the species tree inference method matters more than the subset of data used. Using data from larger gene families drastically increases the number of genes available and leads to consistent estimates of branch lengths, nodal certainty and concordance, and inferences of introgression in primates. For the other data sets, topological inferences are consistent whether single-copy families or orthologs extracted using decomposition approaches are analyzed. Using larger gene families is a promising approach to include more data in phylogenomics without sacrificing accuracy, at least when high-quality genomes are available. 
    more » « less
  6. Buerkle, Alex (Ed.)
    It is now understood that introgression can serve as powerful evolutionary force, providing genetic variation that can shape the course of trait evolution. Introgression also induces a shared evolutionary history that is not captured by the species phylogeny, potentially complicating evolutionary analyses that use a species tree. Such analyses are often carried out on gene expression data across species, where the measurement of thousands of trait values allows for powerful inferences while controlling for shared phylogeny. Here, we present a Brownian motion model for quantitative trait evolution under the multispecies network coalescent framework, demonstrating that introgression can generate apparently convergent patterns of evolution when averaged across thousands of quantitative traits. We test our theoretical predictions using whole-transcriptome expression data from ovules in the wild tomato genus Solanum . Examining two sub-clades that both have evidence for post-speciation introgression, but that differ substantially in its magnitude, we find patterns of evolution that are consistent with histories of introgression in both the sign and magnitude of ovule gene expression. Additionally, in the sub-clade with a higher rate of introgression, we observe a correlation between local gene tree topology and expression similarity, implicating a role for introgressed cis -regulatory variation in generating these broad-scale patterns. Our results reveal a general role for introgression in shaping patterns of variation across many thousands of quantitative traits, and provide a framework for testing for these effects using simple model-informed predictions. 
    more » « less
  7. Kubatko, Laura (Ed.)
    Abstract Many recent phylogenetic methods have focused on accurately inferring species trees when there is gene tree discordance due to incomplete lineage sorting (ILS). For almost all of these methods, and for phylogenetic methods in general, the data for each locus are assumed to consist of orthologous, single-copy sequences. Loci that are present in more than a single copy in any of the studied genomes are excluded from the data. These steps greatly reduce the number of loci available for analysis. The question we seek to answer in this study is: what happens if one runs such species tree inference methods on data where paralogy is present, in addition to or without ILS being present? Through simulation studies and analyses of two large biological data sets, we show that running such methods on data with paralogs can still provide accurate results. We use multiple different methods, some of which are based directly on the multispecies coalescent model, and some of which have been proven to be statistically consistent under it. We also treat the paralogous loci in multiple ways: from explicitly denoting them as paralogs, to randomly selecting one copy per species. In all cases, the inferred species trees are as accurate as equivalent analyses using single-copy orthologs. Our results have significant implications for the use of ILS-aware phylogenomic analyses, demonstrating that they do not have to be restricted to single-copy loci. This will greatly increase the amount of data that can be used for phylogenetic inference.[Gene duplication and loss; incomplete lineage sorting; multispecies coalescent; orthology; paralogy.] 
    more » « less
  8. null (Ed.)
    The incongruence of character states with phylogenetic relationships is often interpreted as evidence of convergent evolution. However, trait evolution along discordant gene trees can also generate these incongruences – a phenomenon known as hemiplasy. Classic comparative methods do not account for discordance, resulting in incorrect inferences about the number, timing, and direction of trait transitions. Biological sources of discordance include incomplete lineage sorting (ILS) and introgression, but only ILS has received theoretical consideration in the context of hemiplasy. Here, we present a model that shows introgression makes hemiplasy more likely, such that methods that account for ILS alone will be conservative. We also present a method and software ( HeIST ) for making statistical inferences about the probability of hemiplasy and homoplasy in large datasets that contain both ILS and introgression. We apply our methods to two empirical datasets, finding that hemiplasy is likely to contribute to the observed trait incongruences in both. 
    more » « less
  9. null (Ed.)
    Advances in genomics have led to an appreciation that introgression is common, but its evolutionary consequences are poorly understood. In recent species radiations the sharing of genetic variation across porous species boundaries can facilitate adaptation to new environments and generate novel phenotypes, which may contribute to further diversification. Most Anopheles mosquito species that are of major importance as human malaria vectors have evolved within recent and rapid radiations of largely nonvector species. Here, we focus on one of the most medically important yet understudied anopheline radiations, the Afrotropical Anopheles funestus complex (AFC), to investigate the role of introgression in its diversification and the possible link between introgression and vector potential. The AFC comprises at least seven morphologically similar species, yet only An. funestus sensu stricto is a highly efficient malaria vector with a pan-African distribution. Based on de novo genome assemblies and additional whole-genome resequencing, we use phylogenomic and population genomic analyses to establish species relationships. We show that extensive interspecific gene flow involving multiple species pairs has shaped the evolutionary history of the AFC since its diversification. The most recent introgression event involved a massive and asymmetrical movement of genes from a distantly related AFC lineage into An. funestus , an event that predated and plausibly facilitated its subsequent dramatic geographic range expansion across most of tropical Africa. We propose that introgression may be a common mechanism facilitating adaptation to new environments and enhancing vectorial capacity in Anopheles mosquitoes. 
    more » « less