Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract MotivationThe application of machine learning approaches in phylogenetics has been impeded by the vast model space associated with inference. Supervised machine learning approaches require data from across this space to train models. Because of this, previous approaches have typically been limited to inferring relationships among unrooted quartets of taxa, where there are only three possible topologies. Here, we explore the potential of generative adversarial networks (GANs) to address this limitation. GANs consist of a generator and a discriminator: at each step, the generator aims to create data that is similar to real data, while the discriminator attempts to distinguish generated and real data. By using an evolutionary model as the generator, we use GANs to make evolutionary inferences. Since a new model can be considered at each iteration, heuristic searches of complex model spaces are possible. Thus, GANs offer a potential solution to the challenges of applying machine learning in phylogenetics. ResultsWe developed phyloGAN, a GAN that infers phylogenetic relationships among species. phyloGAN takes as input a concatenated alignment, or a set of gene alignments, and infers a phylogenetic tree either considering or ignoring gene tree heterogeneity. We explored the performance of phyloGAN for up to 15 taxa in the concatenation case and 6 taxa when considering gene tree heterogeneity. Error rates are relatively low in these simple cases. However, run times are slow and performance metrics suggest issues during training. Future work should explore novel architectures that may result in more stable and efficient GANs for phylogenetics. Availability and implementationphyloGAN is available on github: https://github.com/meganlsmith/phyloGAN/.more » « less
-
Abstract MotivationSite concordance factors (sCFs) have become a widely used way to summarize discordance in phylogenomic datasets. However, the original version of sCFs was calculated by sampling a quartet of tip taxa and then applying parsimony-based criteria for discordance. This approach has the potential to be strongly affected by multiple hits at a site (homoplasy), especially when substitution rates are high or taxa are not closely related. ResultsHere, we introduce a new method for calculating sCFs. The updated version uses likelihood to generate probability distributions of ancestral states at internal nodes of the phylogeny. By sampling from the states at internal nodes adjacent to a given branch, this approach substantially reduces—but does not abolish—the effects of homoplasy and taxon sampling. Availability and implementationUpdated sCFs are implemented in IQ-TREE 2.2.2. The software is freely available at https://github.com/iqtree/iqtree2/releases. Supplementary informationSupplementary information is available at Bioinformatics online.more » « less
-
Abstract Hundreds or thousands of loci are now routinely used in modern phylogenomic studies. Concatenation approaches to tree inference assume that there is a single topology for the entire dataset, but different loci may have different evolutionary histories due to incomplete lineage sorting (ILS), introgression, and/or horizontal gene transfer; even single loci may not be treelike due to recombination. To overcome this shortcoming, we introduce an implementation of a multi-tree mixture model that we call mixtures across sites and trees (MAST). This model extends a prior implementation by Boussau et al. (2009) by allowing users to estimate the weight of each of a set of pre-specified bifurcating trees in a single alignment. The MAST model allows each tree to have its own weight, topology, branch lengths, substitution model, nucleotide or amino acid frequencies, and model of rate heterogeneity across sites. We implemented the MAST model in a maximum-likelihood framework in the popular phylogenetic software, IQ-TREE. Simulations show that we can accurately recover the true model parameters, including branch lengths and tree weights for a given set of tree topologies, under a wide range of biologically realistic scenarios. We also show that we can use standard statistical inference approaches to reject a single-tree model when data are simulated under multiple trees (and vice versa). We applied the MAST model to multiple primate datasets and found that it can recover the signal of ILS in the Great Apes, as well as the asymmetry in minor trees caused by introgression among several macaque species. When applied to a dataset of 4 Platyrrhine species for which standard concatenated maximum likelihood (ML) and gene tree approaches disagree, we observe that MAST gives the highest weight (i.e., the largest proportion of sites) to the tree also supported by gene tree approaches. These results suggest that the MAST model is able to analyze a concatenated alignment using ML while avoiding some of the biases that come with assuming there is only a single tree. We discuss how the MAST model can be extended in the future.more » « less
-
Abstract Phylogenomics has revealed the remarkable frequency with which introgression occurs across the tree of life. These discoveries have been enabled by the rapid growth of methods designed to detect and characterize introgression from whole-genome sequencing data. A large class of phylogenomic methods makes use of data across species to infer and characterize introgression based on expectations from the multispecies coalescent. These methods range from simple tests, such as the D-statistic, to model-based approaches for inferring phylogenetic networks. Here, we provide a detailed overview of the various signals that different modes of introgression are expected leave in the genome, and how current methods are designed to detect them. We discuss the strengths and pitfalls of these approaches and identify areas for future development, highlighting the different signals of introgression, and the power of each method to detect them. We conclude with a discussion of current challenges in inferring introgression and how they could potentially be addressed.more » « less
-
Abstract Phylogenetics has long relied on the use of orthologs, or genes related through speciation events, to infer species relationships. However, identifying orthologs is difficult because gene duplication can obscure relationships among genes. Researchers have been particularly concerned with the insidious effects of pseudoorthologs—duplicated genes that are mistaken for orthologs because they are present in a single copy in each sampled species. Because gene tree topologies of pseudoorthologs may differ from the species tree topology, they have often been invoked as the cause of counterintuitive results in phylogenetics. Despite these perceived problems, no previous work has calculated the probabilities of pseudoortholog topologies or has been able to circumscribe the regions of parameter space in which pseudoorthologs are most likely to occur. Here, we introduce a model for calculating the probabilities and branch lengths of orthologs and pseudoorthologs, including concordant and discordant pseudoortholog topologies, on a rooted three-taxon species tree. We show that the probability of orthologs is high relative to the probability of pseudoorthologs across reasonable regions of parameter space. Furthermore, the probabilities of the two discordant topologies are equal and never exceed that of the concordant topology, generally being much lower. We describe the species tree topologies most prone to generating pseudoorthologs, finding that they are likely to present problems to phylogenetic inference irrespective of the presence of pseudoorthologs. Overall, our results suggest that pseudoorthologs are unlikely to mislead inferences of species relationships under the biological scenarios considered here.[Birth–death model; orthologs; paralogs; phylogenetics.]more » « less
-
Machine learning has increasingly been applied to a wide range of questions in phylogenetic inference. Supervised machine learning approaches that rely on simulated training data have been used to infer tree topologies and branch lengths, to select substitution models, and to perform downstream inferences of introgression and diversification. Here, we review how researchers have used several promising machine learning approaches to make phylogenetic inferences. Despite the promise of these methods, several barriers prevent supervised machine learning from reaching its full potential in phylogenetics. We discuss these barriers and potential paths forward. In the future, we expect that the application of careful network designs and data encodings will allow supervised machine learning to accommodate the complex processes that continue to confound traditional phylogenetic methods.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Phylogenetic comparative methods have long been a mainstay of evolutionary biology, allowing for the study of trait evolution across species while accounting for their common ancestry. These analyses typically assume a single, bifurcating phylogenetic tree describing the shared history among species. However, modern phylogenomic analyses have shown that genomes are often composed of mosaic histories that can disagree both with the species tree and with each other—so-called discordant gene trees. These gene trees describe shared histories that are not captured by the species tree, and therefore that are unaccounted for in classic comparative approaches. The application of standard comparative methods to species histories containing discordance leads to incorrect inferences about the timing, direction, and rate of evolution. Here, we develop two approaches for incorporating gene tree histories into comparative methods: one that constructs an updated phylogenetic variance–covariance matrix from gene trees, and another that applies Felsenstein's pruning algorithm over a set of gene trees to calculate trait histories and likelihoods. Using simulation, we demonstrate that our approaches generate much more accurate estimates of tree-wide rates of trait evolution than standard methods. We apply our methods to two clades of the wild tomato genusSolanumwith varying rates of discordance, demonstrating the contribution of gene tree discordance to variation in a set of floral traits. Our approaches have the potential to be applied to a broad range of classic inference problems in phylogenetics, including ancestral state reconstruction and the inference of lineage-specific rate shifts.more » « less
-
Townsend, Jeffrey (Ed.)Abstract Traditionally, single-copy orthologs have been the gold standard in phylogenomics. Most phylogenomic studies identify putative single-copy orthologs using clustering approaches and retain families with a single sequence per species. This limits the amount of data available by excluding larger families. Recent advances have suggested several ways to include data from larger families. For instance, tree-based decomposition methods facilitate the extraction of orthologs from large families. Additionally, several methods for species tree inference are robust to the inclusion of paralogs and could use all of the data from larger families. Here, we explore the effects of using all families for phylogenetic inference by examining relationships among 26 primate species in detail and by analyzing five additional data sets. We compare single-copy families, orthologs extracted using tree-based decomposition approaches, and all families with all data. We explore several species tree inference methods, finding that identical trees are returned across nearly all subsets of the data and methods for primates. The relationships among Platyrrhini remain contentious; however, the species tree inference method matters more than the subset of data used. Using data from larger gene families drastically increases the number of genes available and leads to consistent estimates of branch lengths, nodal certainty and concordance, and inferences of introgression in primates. For the other data sets, topological inferences are consistent whether single-copy families or orthologs extracted using decomposition approaches are analyzed. Using larger gene families is a promising approach to include more data in phylogenomics without sacrificing accuracy, at least when high-quality genomes are available.more » « less
-
Buerkle, Alex (Ed.)It is now understood that introgression can serve as powerful evolutionary force, providing genetic variation that can shape the course of trait evolution. Introgression also induces a shared evolutionary history that is not captured by the species phylogeny, potentially complicating evolutionary analyses that use a species tree. Such analyses are often carried out on gene expression data across species, where the measurement of thousands of trait values allows for powerful inferences while controlling for shared phylogeny. Here, we present a Brownian motion model for quantitative trait evolution under the multispecies network coalescent framework, demonstrating that introgression can generate apparently convergent patterns of evolution when averaged across thousands of quantitative traits. We test our theoretical predictions using whole-transcriptome expression data from ovules in the wild tomato genus Solanum . Examining two sub-clades that both have evidence for post-speciation introgression, but that differ substantially in its magnitude, we find patterns of evolution that are consistent with histories of introgression in both the sign and magnitude of ovule gene expression. Additionally, in the sub-clade with a higher rate of introgression, we observe a correlation between local gene tree topology and expression similarity, implicating a role for introgressed cis -regulatory variation in generating these broad-scale patterns. Our results reveal a general role for introgression in shaping patterns of variation across many thousands of quantitative traits, and provide a framework for testing for these effects using simple model-informed predictions.more » « less