skip to main content


Search for: All records

Award ID contains: 1936319

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We conducted a critical review to establish what is known about the sources, characteristics, and dissemination of ARGs in the atmosphere. We identified 52 papers that reported direct measurements of bacterial ARGs in air samples and met other inclusion criteria. The settings of the studies fell into the following categories: urban, rural, hospital, industrial, wastewater treatment plants (WWTPs), composting and landfill sites, and indoor environments. Certain genes were commonly studied and generally abundant: sul1 , intI1 , β-lactam ARGs, and tetracycline ARGs. Abundances of total ARGs varied by season and setting, with air in urban areas having higher ARG abundance than rural areas during the summer and vice versa during the winter. There was greater consistency in the types and abundances of ARGs throughout the seasons in urban areas. Human activity within indoor environments was also linked to increased ARG content (abundance, diversity, and concentration) in the air. Several studies found that human exposure to ARGs through inhalation was comparable to exposure through drinking water or ingesting soil. Detection of ARGs in air is a developing field, and differences in sampling and analysis methods reflect the many possible approaches to studying ARGs in air and make direct comparisons between studies difficult. Methodologies need to be standardized to facilitate identification of the dominant ARGs in the air, determine their major sources, and quantify the role of atmospheric transport in dissemination of ARGs in the environment. With such knowledge we can develop better policies and guidelines to limit the spread of antimicrobial resistance. 
    more » « less
  2. Antibiotic resistance genes (ARGs) are commonly detected in the atmosphere, but questions remain regarding their sources and relative contributions, bacterial hosts, and corresponding human health risks. Here, we conducted a qPCR- and metagenomics-based investigation of inhalable fine particulate matter (PM2.5) at a large wastewater treatment plant (WWTP) and in the ambient air of Hong Kong, together with an in-depth analysis of published data of other potential sources in the area. PM2.5 was observed with increasing enrichment of total ARGs along the coastal–urban–WWTP gradient and clinically relevant ARGs commonly identified in urban and WWTP sites, illustrating anthropogenic impacts on the atmospheric accumulation of ARGs. With certain kinds of putative antibiotic-resistant pathogens detected in urban and WWTP PM2.5, a comparable proportion of ARGs that co-occurred with MGEs was found between the atmosphere and WWTP matrices. Despite similar emission rates of bacteria and ARGs within each WWTP matrix, about 11–13% of the bacteria and >57% of the relevant ARGs in urban and WWTP PM2.5 were attributable to WWTPs. Our study highlights the importance of WWTPs in disseminating bacteria and ARGs to the ambient air from a quantitative perspective and, thus, the need to control potential sources of inhalation exposure to protect the health of urban populations. 
    more » « less