skip to main content


Title: Inhalable Antibiotic Resistome from Wastewater Treatment Plants to Urban Areas: Bacterial Hosts, Dissemination Risks, and Source Contributions
Antibiotic resistance genes (ARGs) are commonly detected in the atmosphere, but questions remain regarding their sources and relative contributions, bacterial hosts, and corresponding human health risks. Here, we conducted a qPCR- and metagenomics-based investigation of inhalable fine particulate matter (PM2.5) at a large wastewater treatment plant (WWTP) and in the ambient air of Hong Kong, together with an in-depth analysis of published data of other potential sources in the area. PM2.5 was observed with increasing enrichment of total ARGs along the coastal–urban–WWTP gradient and clinically relevant ARGs commonly identified in urban and WWTP sites, illustrating anthropogenic impacts on the atmospheric accumulation of ARGs. With certain kinds of putative antibiotic-resistant pathogens detected in urban and WWTP PM2.5, a comparable proportion of ARGs that co-occurred with MGEs was found between the atmosphere and WWTP matrices. Despite similar emission rates of bacteria and ARGs within each WWTP matrix, about 11–13% of the bacteria and >57% of the relevant ARGs in urban and WWTP PM2.5 were attributable to WWTPs. Our study highlights the importance of WWTPs in disseminating bacteria and ARGs to the ambient air from a quantitative perspective and, thus, the need to control potential sources of inhalation exposure to protect the health of urban populations.  more » « less
Award ID(s):
1936319 2004751 1545756
NSF-PAR ID:
10321099
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Environmental Science & Technology
ISSN:
0013-936X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Wastewater treatment plants (WWTPs) receive a confluence of sewage containing antimicrobials, antibiotic resistant bacteria, antibiotic resistance genes (ARGs), and pathogens and thus are a key point of interest for antibiotic resistance surveillance. WWTP monitoring has the potential to inform with respect to the antibiotic resistance status of the community served as well as the potential for ARGs to escape treatment. However, there is lack of agreement regarding suitable sampling frequencies and monitoring targets to facilitate comparison within and among individual WWTPs. The objective of this study was to comprehensively evaluate patterns in metagenomic-derived indicators of antibiotic resistance through various stages of treatment at a conventional WWTP for the purpose of informing local monitoring approaches that are also informative for global comparison. Relative abundance of total ARGs decreased by ∼50% from the influent to the effluent, with each sampling location defined by a unique resistome (i.e., total ARG) composition. However, 90% of the ARGs found in the effluent were also detected in the influent, while the effluent ARG-pathogen taxonomic linkage patterns identified in assembled metagenomes were more similar to patterns in regional clinical surveillance data than the patterns identified in the influent. Analysis of core and discriminatory resistomes and general ARG trends across the eight sampling events (i.e., tendency to be removed, increase, decrease, or be found in the effluent only), along with quantification of ARGs of clinical concern, aided in identifying candidate ARGs for surveillance. Relative resistome risk characterization further provided a comprehensive metric for predicting the relative mobility of ARGs and likelihood of being carried in pathogens and can help to prioritize where to focus future monitoring and mitigation. Most antibiotics that were subject to regional resistance testing were also found in the WWTP, with the total antibiotic load decreasing by ∼40–50%, but no strong correlations were found between antibiotics and corresponding ARGs. Overall, this study provides insight into how metagenomic data can be collected and analyzed for surveillance of antibiotic resistance at WWTPs, suggesting that effluent is a beneficial monitoring point with relevance both to the local clinical condition and for assessing efficacy of wastewater treatment in reducing risk of disseminating antibiotic resistance. 
    more » « less
  2. We conducted a critical review to establish what is known about the sources, characteristics, and dissemination of ARGs in the atmosphere. We identified 52 papers that reported direct measurements of bacterial ARGs in air samples and met other inclusion criteria. The settings of the studies fell into the following categories: urban, rural, hospital, industrial, wastewater treatment plants (WWTPs), composting and landfill sites, and indoor environments. Certain genes were commonly studied and generally abundant: sul1 , intI1 , β-lactam ARGs, and tetracycline ARGs. Abundances of total ARGs varied by season and setting, with air in urban areas having higher ARG abundance than rural areas during the summer and vice versa during the winter. There was greater consistency in the types and abundances of ARGs throughout the seasons in urban areas. Human activity within indoor environments was also linked to increased ARG content (abundance, diversity, and concentration) in the air. Several studies found that human exposure to ARGs through inhalation was comparable to exposure through drinking water or ingesting soil. Detection of ARGs in air is a developing field, and differences in sampling and analysis methods reflect the many possible approaches to studying ARGs in air and make direct comparisons between studies difficult. Methodologies need to be standardized to facilitate identification of the dominant ARGs in the air, determine their major sources, and quantify the role of atmospheric transport in dissemination of ARGs in the environment. With such knowledge we can develop better policies and guidelines to limit the spread of antimicrobial resistance. 
    more » « less
  3. null (Ed.)
    Understanding the movement of antimicrobial resistance genes (ARGs) in the environment is critical to managing their spread. To assess potential ARG transport through the air via urban bioaerosols in cities with poor sanitation, we quantified ARGs and a mobile integron (MI) in ambient air over periods spanning rainy and dry seasons in Kanpur, India ( n = 53), where open wastewater canals (OCWs) are prevalent. Gene targets represented major antibiotic groups—tetracyclines ( tetA ), fluoroquinolines ( qnrB ), and beta-lactams ( bla TEM )—and a class 1 mobile integron ( intI1 ). Over half of air samples located near, and up to 1 km from OCWs with fecal contamination ( n = 45) in Kanpur had detectable targets above the experimentally determined limits of detection (LOD): most commonly intI1 and tetA (56% and 51% of samples, respectively), followed by bla TEM (8.9%) and qnrB (0%). ARG and MI densities in these positive air samples ranged from 6.9 × 10 1 to 5.2 × 10 3 gene copies/m 3 air. Most (7/8) control samples collected 1 km away from OCWs were negative for any targets. In comparing experimental samples with control samples, we found that intI1 and tetA densities in air are significantly higher ( P = 0.04 and P = 0.01, respectively, alpha = 0.05) near laboratory-confirmed fecal contaminated waters than at the control site. These data suggest increased densities of ARGs and MIs in bioaerosols in urban environments with inadequate sanitation. In such settings, aerosols may play a role in the spread of AR. 
    more » « less
  4. Elkins, Christopher A. (Ed.)

    WWTPs have been regarded as an important hot spot of ARGs. The discharge point of WWTP effluent, where ARGs may be horizontally transferred from bacteria of treated wastewater to bacteria of receiving water, is an important interface between the human-dominated ecosystem and the natural environment.

     
    more » « less
  5. Urbanization poses increasing threats to aquatic ecosystems, including increased chemical loading. Of relatively recent concern is the potential of urban stormwater runoff to facilitate the spread of microplastics (MPs), including tire wear particles. Previous studies have demonstrated the effectiveness of bioretention treatment systems in treating runoff, thereby reducing chemical loading into surface waters and preventing acutely lethal and sublethal effects to aquatic organisms. In this study, we aimed to determine the effectiveness and longevity of bioretention soil media (BSM) at various infiltration depths, including the shallower depth currently required by the Washington Department of Ecology (18”). Experimental columns containing three different BSM depths were dosed with roadway runoff at an accelerated rate to simulate nine water years in approximately 30 calendar months. The chemical and biological effectiveness of the columns in treating runoff was assessed by analyzing influent/effluent chemistry and characterizing the health of juvenile coho salmon (Oncorhynchus kisutch). Bioretention treatment efficiently removed copper, zinc, total PAHs, and total suspended solids (> 70% removal). Influent stormwater runoff was acutely lethal to juvenile coho salmon (88, 90, 100, and 56.3% mortality in four exposures across the nine accelerated years). However, bioretention treatment was protective of coho, altogether preventing mortality for all treatment depths in three exposures and all but one depth in the last exposure, likely due to overflow when influent flow exceeded the ponding capacity of some of the columns. This study is ongoing and will continue to assess bioretention effectiveness through 10 accelerated years. Future research should consider the ability of bioretention systems to remove MPs and associated pollutants in runoff and explore the fate of MP-contaminant complexes in bioretention systems. Although contaminants themselves, MPs can also act as vectors of other contaminants of concern in aquatic ecosystems, including antibiotic resistance genes (ARGs). Contaminants co-occurring in runoff (e.g., heavy metals) can stimulate the selection or amplification of these ARGs. If left untreated, runoff carrying ARGs to surface waters could increase resistance in environmental bacteria and risks to human health. 
    more » « less