This study explores the behavior of machine-learning-based flare forecasting models deployed in a simulated operational environment. Using Georgia State University’s Space Weather Analytics for Solar Flares benchmark data set, we examine the impacts of training methodology and the solar cycle on decision tree, support vector machine, and multilayer perceptron performance. We implement our classifiers using three temporal training windows: stationary, rolling, and expanding. The stationary window trains models using a single set of data available before the first forecasting instance, which remains constant throughout the solar cycle. The rolling window trains models using data from a constant time interval before the forecasting instance, which moves with the solar cycle. Finally, the expanding window trains models using all available data before the forecasting instance. For each window, a number of input features (1, 5, 10, 25, 50, and 120) and temporal sizes (5, 8, 11, 14, 17, and 20 months) were tested. To our surprise, we found that, for a window of 20 months, skill scores were comparable regardless of the window type, feature count, and classifier selected. Furthermore, reducing the size of this window only marginally decreased stationary and rolling window performance. This implies that, given enough data, a stationary window can be chosen over other window types, eliminating the need for model retraining. Finally, a moderately strong positive correlation was found to exist between a model’s false-positive rate and the solar X-ray background flux. This suggests that the solar cycle phase has a considerable influence on forecasting.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Solar energetic particle (SEP) events and their major subclass, solar proton events (SPEs), can have unfavorable consequences on numerous aspects of life and technology, making them one of the most harmful effects of solar activity. Garnering knowledge preceding such events by studying operational data flows is essential for their forecasting. Considering only solar cycle (SC) 24 in our previous study, we found that it may be sufficient to only utilize proton and soft X-ray (SXR) parameters for SPE forecasts. Here, we report a catalog recording ≥10 MeV ≥10 particle flux unit SPEs with their properties, spanning SCs 22–24, using NOAA’s Geostationary Operational Environmental Satellite flux data. We report an additional catalog of daily proton and SXR flux statistics for this period, employing it to test the application of machine learning (ML) on the prediction of SPEs using a support vector machine (SVM) and extreme gradient boosting (XGBoost). We explore the effects of training models with data from one
and two SCs, evaluating how transferable a model might be across different time periods. XGBoost proved to be more accurate than SVMs for almost every test considered, while also outperforming operational SWPC NOAA predictions and a persistence forecast. Interestingly, training done with SC 24 produces weaker true skill statistic and Heidke skill scores2, even when paired with SC 22 or SC 23, indicating transferability issues. This work contributes toward validating forecasts using long-spanning data—an understudied area in SEP research that should be considered to verify the cross cycle robustness of ML-driven forecasts. -
Abstract The first significant sunquake event of Solar Cycle 25 was observed during the X1.5 flare of 2022 May 10, by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. We perform a detailed spectro-polarimetric analysis of the sunquake photospheric sources, using the Stokes profiles of the Fe
i 6173 Å line, reconstructed from the HMI linear and circular polarized filtergrams. The results show fast variations of the continuum emission with rapid growth and slower decay lasting 3–4 minutes, coinciding in time with the hard X-ray impulses observed by the Konus instrument on board the Wind spacecraft. The variations in the line core appeared slightly ahead of the variations in the line wings, showing that the heating started in the higher atmospheric layers and propagated downward. The most significant feature of the line profile variations is the transient emission in the line core in three of the four sources, indicating intense, impulsive heating in the lower chromosphere and photosphere. In addition, the observed variations of the Stokes profiles reflect transient and permanent changes in the magnetic field strength and geometry in the sunquake sources. Comparison with the radiative hydrodynamics models shows that the physical processes in the impulsive flare phase are substantially more complex than those predicted by proton and electron beam flare models currently presented in the literature. -
Abstract Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) observations reveal a class of solar flares with substantial energy and momentum impacts in the photosphere, concurrent with white-light emission and helioseismic responses, known as sunquakes. Previous radiative hydrodynamic modeling has demonstrated the challenges of explaining sunquakes in the framework of the standard flare model of “electron beam” heating. One of the possibilities to explain the sunquakes and other signatures of the photospheric impact is to consider additional heating mechanisms involved in solar flares, for example via flare-accelerated protons. In this work, we analyze a set of single-loop Fokker–Planck and radiative hydrodynamics RADYN+FP simulations where the atmosphere is heated by nonthermal power-law-distributed proton beams which can penetrate deeper than the electron beams into the low atmospheric layers. Using the output of the RADYN models, we calculate synthetic Fe
i 6173 Å line Stokes profiles and from those the line-of-sight observables of the SDO/HMI instrument, as well as the 3D helioseismic response, and compare them with the corresponding observational characteristics. These initial results show that the models with proton beam heating can produce the enhancement of the HMI continuum observable and explain qualitatively the generation of sunquakes. The continuum observable enhancement is evident in all models but is more prominent in ones withE c ≥ 500 keV. In contrast, the models withE c ≤ 100 keV provide a stronger sunquake-like helioseismic impact according to the 3D acoustic modeling, suggesting that low-energy (deka- and hecto-keV) protons have an important role in the generation of sunquakes. -
Abstract We present a comparison of the measured cosmic ray (CR) muon fluxes from two identical portable low‐cost detectors at different geolocations and their sensitivity to space weather events in real time. The first detector is installed at Mount Wilson Observatory, CA, USA (geomagnetic cutoff rigidity Rc ∼ 4.88 GV), and the second detector is running on the downtown campus of Georgia State University in Atlanta, GA, USA (Rc ∼ 3.65 GV). The variation of the detected muon fluxes is compared to the changes in the interplanetary solar wind parameters at the L1 Lagrange point and geomagnetic indexes. In particular, we have investigated the muon flux behavior during three major interplanetary shock events and geomagnetic disturbances that occurred during July and August of 2022. To validate the interpretation of the measured muon signals, we compare the muon fluxes to the measurement from the Oulu neutron monitor (NM, Rc ∼ 0.8 GV). The results of this analysis show that the muon detector installed at Mount Wilson Observatory demonstrates a stronger correlation with a high‐latitude NM. Both detectors typically observe a muon flux decrease during the arrival of interplanetary shocks and geomagnetic storms. Interestingly, the decrease could be observed several hours before the onset of the first considered interplanetary shocks at L1 at 2022‐07‐23 02:28:00 UT driven by the high‐speed Coronal Mass Ejection and related geomagnetic storm at 2022‐07‐23 03:59:00 UT. This effort represents an initial step toward establishing a global network of portable low‐cost CR muon detectors for monitoring the sensitivity of muon flux changes to space and terrestrial weather parameters.
Free, publicly-accessible full text available December 1, 2024 -
Abstract Spectral lines formed at lower atmospheric layers show peculiar profiles at the “leading edge” of ribbons during solar flares. In particular, increased absorption of the BBSO/GST He
i λ 10830 line, as well as broad and centrally reversed profiles in the spectra of the Mgii and Cii lines observed by the IRIS satellite, has been reported. In this work, we aim to understand the physical origin of such peculiar IRIS profiles, which seem to be common of many, if not all, flares. To achieve this, we quantify the spectral properties of the IRIS Mgii profiles at the ribbon leading edge during four large flares and perform a detailed comparison with a grid of radiative hydrodynamic models using theRADYN+FP code. We also studied their transition region (TR) counterparts, finding that these ribbon front locations are regions where TR emission and chromospheric evaporation are considerably weaker compared to other parts of the ribbons. Based on our comparison between the IRIS observations and modeling, our interpretation is that there are different heating regimes at play in the leading edge and the main bright part of the ribbons. More specifically, we suggest that bombardment of the chromosphere by more gradual and modest nonthermal electron energy fluxes can qualitatively explain the IRIS observations at the ribbon leading front, while stronger and more impulsive energy fluxes are required to drive chromospheric evaporation and more intense TR emission in the bright ribbon. Our results provide a possible physical origin for the peculiar behavior of the IRIS chromospheric lines in the ribbon leading edge and new constraints for the flare models. -
Free, publicly-accessible full text available April 1, 2025
-
ABSTRACT Understanding the effects driven by rotation in the solar convection zone is essential for many problems related to solar activity, such as the formation of differential rotation, meridional circulation, and others. We analyse realistic 3D radiative hydrodynamics simulations of solar subsurface dynamics in the presence of rotation in a local domain 80 Mm wide and 25 Mm deep, located at 30° latitude. The simulation results reveal the development of a shallow 10 Mm deep substructure of the near-surface shear layer (NSSL), characterized by a strong radial rotational gradient and self-organized meridional flows. This shallow layer (‘leptocline’) is located in the hydrogen ionization zone associated with enhanced anisotropic overshooting-type flows into a less unstable layer between the H and He ii ionization zones. We discuss current observational evidence of the presence of the leptocline and show that the radial variations of the differential rotation and meridional flow profiles obtained from the simulations in this layer qualitatively agree with helioseismic observations.more » « less
-
Abstract This study presents a C3.0 flare observed by the Big Bear Solar Observatory/Goode Solar Telescope (GST) and Interface Region Imaging Spectrograph (IRIS) on 2018 May 28 around 17:10 UT. The Near-Infrared Imaging Spectropolarimeter of GST was set to spectral imaging mode to scan five spectral positions at ±0.8, ±0.4 Å and line center of He i 10830 Å. At the flare ribbon’s leading edge, the line is observed to undergo enhanced absorption, while the rest of the ribbon is observed to be in emission. When in emission, the contrast compared to the preflare ranges from about 30% to nearly 100% at different spectral positions. Two types of spectra, “convex” shape with higher intensity at line core and “concave” shape with higher emission in the line wings, are found at the trailing and peak flaring areas, respectively. On the ribbon front, negative contrasts, or enhanced absorption, of about ∼10%–20% appear in all five wavelengths. This observation strongly suggests that the negative flares observed in He i 10830 Å with mono-filtergram previously were not caused by pure Doppler shifts of this spectral line. Instead, the enhanced absorption appears to be a consequence of flare-energy injection, namely nonthermal collisional ionization of helium caused by the precipitation of high-energy electrons, as found in our recent numerical modeling results. In addition, though not strictly simultaneous, observations of Mg ii from the IRIS spacecraft, show an obvious central reversal pattern at the locations where enhanced absorption of He i 10830 Å is seen, which is consistent with previous observations.more » « less