skip to main content


Search for: All records

Award ID contains: 1937435

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The rise of deep neural networks offers new opportunities in optimizing recommender systems. However, optimizing recommender systems using deep neural networks requires delicate architecture fabrication. We propose NASRec, a paradigm that trains a single supernet and efficiently produces abundant models/sub-architectures by weight sharing. To overcome the data multi-modality and architecture heterogeneity challenges in the recommendation domain, NASRec establishes a large supernet (i.e., search space) to search the full architectures. The supernet incorporates versatile choice of operators and dense connectivity to minimize human efforts for finding priors. The scale and heterogeneity in NASRec impose several challenges, such as training inefficiency, operator-imbalance, and degraded rank correlation. We tackle these challenges by proposing single-operator any-connection sampling, operator-balancing interaction modules, and post-training fine-tuning. Our crafted models, NASRecNet, show promising results on three Click-Through Rates (CTR) prediction benchmarks, indicating that NASRec outperforms both manually designed models and existing NAS methods with state-of-the-art performance. Our work is publicly available here. 
    more » « less
    Free, publicly-accessible full text available April 30, 2024
  2. The interaction and dimension of points are two important axes in designing point operators to serve hierarchical 3D models. Yet, these two axes are heterogeneous and challenging to fully explore. Existing works craft point operator under a single axis and reuse the crafted operator in all parts of 3D models. This overlooks the opportunity to better combine point interactions and dimensions by exploiting varying geometry/density of 3D point clouds. In this work, we establish PIDS, a novel paradigm to jointly explore point interactions and point dimensions to serve semantic segmentation on point cloud data. We establish a large search space to jointly consider versatile point interactions and point dimensions. This supports point operators with various geometry/density considerations. The enlarged search space with heterogeneous search components calls for a better ranking of candidate models. To achieve this, we improve the search space exploration by leveraging predictor-based Neural Architecture Search (NAS), and enhance the quality of prediction by assigning unique encoding to heterogeneous search components based on their priors. We thoroughly evaluate the networks crafted by PIDS on two semantic segmentation benchmarks, showing 1% mIOU improvement on SemanticKITTI and S3DIS over state-of-the-art 3D models. 
    more » « less
  3. The interaction and dimension of points are two important axes in designing point operators to serve hierarchical 3D models. Yet, these two axes are heterogeneous and challenging to fully explore. Existing works craft point operator under a single axis and reuse the crafted operator in all parts of 3D models. This overlooks the opportunity to better combine point interactions and dimensions by exploiting varying geometry/density of 3D point clouds. In this work, we establish PIDS, a novel paradigm to jointly explore point interactions and point dimensions to serve semantic segmentation on point cloud data. We establish a large search space to jointly consider versatile point interactions and point dimensions. This supports point operators with various geometry/density considerations. The enlarged search space with heterogeneous search components calls for a better ranking of candidate models. To achieve this, we improve the search space exploration by leveraging predictor-based Neural Architecture Search (NAS), and enhance the quality of prediction by assigning unique encoding to heterogeneous search components based on their priors. We thoroughly evaluate the networks crafted by PIDS on two semantic segmentation benchmarks, showing ∼ 1% mIOU improvement on SemanticKITTI and S3DIS over state-of-the-art 3D models. 
    more » « less
  4. In the past decade, Deep Neural Networks (DNNs), e.g., Convolutional Neural Networks, achieved human-level performance in vision tasks such as object classification and detection. However, DNNs are known to be computationally expensive and thus hard to be deployed in real-time and edge applications. Many previous works have focused on DNN model compression to obtain smaller parameter sizes and consequently, less computational cost. Such methods, however, often introduce noticeable accuracy degradation. In this work, we optimize a state-of-the-art DNN-based video detection framework—Deep Feature Flow (DFF) from the cloud end using three proposed ideas. First, we propose Asynchronous DFF (ADFF) to asynchronously execute the neural networks. Second, we propose a Video-based Dynamic Scheduling (VDS) method that decides the detection frequency based on the magnitude of movement between video frames. Last, we propose Spatial Sparsity Inference, which only performs the inference on part of the video frame and thus reduces the computation cost. According to our experimental results, ADFF can reduce the bottleneck latency from 89 to 19 ms. VDS increases the detection accuracy by 0.6% mAP without increasing computation cost. And SSI further saves 0.2 ms with a 0.6% mAP degradation of detection accuracy. 
    more » « less
  5. null (Ed.)
    The ever-growing parameter size and computation cost of Convolutional Neural Network (CNN) models hinder their deployment onto resource-constrained platforms. Network pruning techniques are proposed to remove the redundancy in CNN parameters and produce a sparse model. Sparse-aware accelerators are also proposed to reduce the computation cost and memory bandwidth requirements of inference by leveraging the model sparsity. The irregularity of sparse patterns, however, limits the efficiency of those designs. Researchers proposed to address this issue by creating a regular sparsity pattern through hardware-aware pruning algorithms. However, the pruning rate of these solutions is largely limited by the enforced sparsity patterns. This limitation motivates us to explore other compression methods beyond pruning. With two decoupled computation stages, we found that kernel decomposition could potentially take the processing of the sparse pattern off from the critical path of inference and achieve a high compression ratio without enforcing the sparse patterns. To exploit these advantages, we propose ESCALATE, an algorithm-hardware co-design approach based on kernel decomposition. At algorithm level, ESCALATE reorganizes the two computation stages of the decomposed convolution to enable a stream processing of the intermediate feature map. We proposed a hybrid quantization to exploit the different reuse frequency of each part of the decomposed weight. At architecture level, ESCALATE proposes a novel ‘Basis-First’ dataflow and its corresponding microarchitecture design to maximize the benefits brought by the decomposed convolution. 
    more » « less
  6. null (Ed.)
    The invention of Transformer model structure boosts the performance of Neural Machine Translation (NMT) tasks to an unprecedented level. Many previous works have been done to make the Transformer model more execution-friendly on resource-constrained platforms. These researches can be categorized into three key fields: Model Pruning, Transfer Learning, and Efficient Transformer Variants. The family of model pruning methods are popular for their simplicity in practice and promising compression rate and have achieved great success in the field of convolution neural networks (CNNs) for many vision tasks. Nonetheless, previous Transformer pruning works did not perform a thorough model analysis and evaluation on each Transformer component on off-the-shelf mobile devices. In this work, we analyze and prune transformer models at the line-wise granularity and also implement our pruning method on real mobile platforms. We explore the properties of all Transformer components as well as their sparsity features, which are leveraged to guide Transformer model pruning. We name our whole Transformer analysis and pruning pipeline as TPrune. In TPrune, we first propose Block-wise Structured Sparsity Learning (BSSL) to analyze Transformer model property. Then, based on the characters derived from BSSL, we apply Structured Hoyer Square (SHS) to derive the final pruned models. Comparing with the state-of-the-art Transformer pruning methods, TPrune is able to achieve a higher model compression rate with less performance degradation. Experimental results show that our pruned models achieve 1.16×–1.92× speedup on mobile devices with 0%–8% BLEU score degradation compared with the original Transformer model. 
    more » « less
  7. null (Ed.)
  8. Although state-of-the-art (SOTA) CNNs achieve outstanding performance on various tasks, their high computation demand and massive number of parameters make it difficult to deploy these SOTA CNNs onto resource-constrained devices. Previous works on CNN acceleration utilize low-rank approximation of the original convolution layers to reduce computation cost. However, these methods are very difficult to conduct upon sparse models, which limits execution speedup since redundancies within the CNN model are not fully exploited. We argue that kernel granularity decomposition can be conducted with low-rank assumption while exploiting the redundancy within the remaining compact coefficients. Based on this observation, we propose PENNI, a CNN model compression framework that is able to achieve model compactness and hardware efficiency simultaneously by (1) implementing kernel sharing in convolution layers via a small number of basis kernels and (2) alternately adjusting bases and coefficients with sparse constraints. Experiments show that we can prune 97% parameters and 92% FLOPs on ResNet18 CIFAR10 with no accuracy loss, and achieve 44% reduction in run-time memory consumption and a 53% reduction in inference latency. 
    more » « less