skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1937923

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The poor reversibility of Zn metal anodes arising from water‐induced parasitic reactions poses a significant challenge to the practical applications of aqueous zinc‐ion batteries (AZIBs). Herein, a novel quasi‐solid‐state “water‐in‐swelling‐clay” electrolyte (WiSCE) containing zinc sulfate and swelling clay, bentonite (BT), is designed to enable highly reversible Zn metal anodes. AZIB full cells based on the WiSCE exhibit excellent cyclic stability at various current densities, long shelf life, low self‐discharge rate, and outstanding high‐temperature adaptability. Particularly, the capacity of WiSCE‐based AZIB full cells retains 90.47% after 200 cycles at 0.1 A g−1, 96.64% after 2000 cycles at 1 A g−1, and 88.29% after 5000 cycles at 3 A g−1. Detailed density functional theory calculations show that strong hydrogen bonds are formed between BT and water molecules in the WiSCE. Thus, water molecules are strongly confined by BT, particularly within the interlayers, which significantly inhibits water‐induced parasitic reactions and greatly improves cyclic stability. Compared to the state‐of‐the‐art “water‐in‐salt” electrolytes, the WiSCE can provide a significantly higher capacity at the full‐cell level with a substantially reduced cost, which is promising for the design of next‐generation high‐performance AZIBs. This work provides a new direction for developing cost‐competitive AZIBs as alternatives to grid‐scale energy storage. 
    more » « less
  2. Graphene nanochannels and nanostructures have been of great interest to applications like nanofluidics and solar-thermal evaporation since nanoconfinement can lead to altered liquid properties. In this article, we employ molecular dynamics simulations combined with the free energy perturbation method to study the influence of external electric fields on the free energy of water molecules in graphene nanochannels. We observe a decrease in the water free energy difference ([Formula: see text], where 0 is the reference vacuum state and 1 is the solvated state) with the increasing electric field, suggesting that the application of an electric field may reduce the thermal energy needed to evaporate water from graphene nanochannels. Our analysis reveals that the reduction in free energy difference is related to more aligned water molecules along the electric field direction in the nanochannels, which leads to a decrease in the water inter-molecular potential energy and, thus, reduces the free energy difference. 
    more » « less
  3. Plasma-enhanced chemical vapor deposition (PECVD) provides a low-temperature, highly-efficient, and catalyst-free route to fabricate graphene materials by virtue of the unique properties of plasma. In this paper, we conduct reactive molecular dynamics simulations to theoretically study the detailed growth process of graphene by PECVD at the atomic scale. Hydrocarbon radicals with different carbon/hydrogen (C/H) ratios are employed as dissociated precursors in the plasma environment during the growth process. The simulation results show that hydrogen content in the precursors significantly affects the growth behavior and properties of graphene ( e.g. , the quality of obtained graphene, which is indicated by the number of hexagonal carbon rings formed in the graphene sheets). Moreover, increasing the content of hydrogen in the precursors is shown to reduce the growth rate of carbon clusters, and prevent the formation of curved carbon structures during the growth process. The findings provide a detailed understanding of the fundamental mechanisms regarding the effects of hydrogen on the growth of graphene in a PECVD process. 
    more » « less