skip to main content


Title: Effect of electric field on water free energy in graphene nanochannel
Graphene nanochannels and nanostructures have been of great interest to applications like nanofluidics and solar-thermal evaporation since nanoconfinement can lead to altered liquid properties. In this article, we employ molecular dynamics simulations combined with the free energy perturbation method to study the influence of external electric fields on the free energy of water molecules in graphene nanochannels. We observe a decrease in the water free energy difference ([Formula: see text], where 0 is the reference vacuum state and 1 is the solvated state) with the increasing electric field, suggesting that the application of an electric field may reduce the thermal energy needed to evaporate water from graphene nanochannels. Our analysis reveals that the reduction in free energy difference is related to more aligned water molecules along the electric field direction in the nanochannels, which leads to a decrease in the water inter-molecular potential energy and, thus, reduces the free energy difference.  more » « less
Award ID(s):
1937923
PAR ID:
10388851
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
132
Issue:
1
ISSN:
0021-8979
Page Range / eLocation ID:
015104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The interaction of graphene with water molecules under an applied electric field is not thoroughly understood, yet this interaction is important to many thermal, fluidic, and electrical applications of graphene. In this work, the effect of electrical doping of graphene on water adsorption is studied through adsorption isotherms and current–voltage (IV) characterizations as a function of the Fermi level. The water adsorption onto graphene increases by ≈15% and the doping levels increase by a factor of three with a gate‐to‐graphene voltage of +20 or −20 V compared to 0 V for sub‐monolayer adsorption. This change in uptake is attributed to the increase in density of state of graphene upon electrical‐doping, which changes the Coulombic and van der Waals interactions. The water adsorption onto graphene is either n‐ or p‐doping depending on the applied gate‐to‐graphene voltage. The ambi‐doping nature of water onto graphene is due to the polar nature of water molecules, so the doping depends on the orientation of the water molecules.

     
    more » « less
  2. Molecular dynamics simulations are used to study nonlinear dielectric responses of a confined aqueous film in a planar nanopore under perpendicular electric fields at varied voltages between confining graphene sheets. Dielectric saturation reminiscent of the bulk phase behavior is prevalent at very strong fields, whereas we observe a nonmonotonic permittivity dependence on electric field at intermediate strengths where field-alignment and spontaneous polarization of interfacial water are of comparable magnitudes. The coupling between the two effects results in distinct dielectric responses at opposite confinement walls. The normal component of both the differential dielectric constant and dielectric difference constant tensors averaged over the region closer to the wall under incoming electric field (field pointing from the liquid to the solid phase) initially increases with the strength of the imposed field. The differential permittivity peaks at a field strength previously shown to offset the surface-induced orientation bias of hydration molecules at this wall. Further strengthening of the field results in conventional saturation behavior. At the opposite wall (subject to outgoing field) and in the central region of water slab, the nonlinear dielectric response resembles bulklike saturation. The conditions at the permittivity extremum coincide with the window of accelerated reorientation rates of interfacial water molecules under incoming field uncovered in earlier molecular dynamics analyses. 
    more » « less
  3. Ordered nanoscale patterns have been observed by atomic force microscopy at graphene–water and graphite–water interfaces. The two dominant explanations for these patterns are that (i) they consist of self-assembled organic contaminants or (ii) they are dense layers formed from atmospheric gases (especially nitrogen). Here we apply molecular dynamics simulations to study the behavior of dinitrogen and possible organic contaminants at the graphene–water interface. Despite the high concentration of N 2 in ambient air, we find that its expected occupancy at the graphene–water interface is quite low. Although dense (disordered) aggregates of dinitrogen have been observed in previous simulations, our results suggest that they are stable only in the presence of supersaturated aqueous N 2 solutions and dissipate rapidly when they coexist with nitrogen gas near atmospheric pressure. On the other hand, although heavy alkanes are present at only trace concentrations (micrograms per cubic meter) in typical indoor air, we predict that such concentrations can be sufficient to form ordered monolayers that cover the graphene–water interface. For octadecane, grand canonical Monte Carlo suggests nucleation and growth of monolayers above an ambient concentration near 6 μg m −3 , which is less than some literature values for indoor air. The thermodynamics of the formation of these alkane monolayers includes contributions from the hydration free-energy (unfavorable), the free-energy of adsorption to the graphene–water interface (highly favorable), and integration into the alkane monolayer phase (highly favorable). Furthermore, the peak-to-peak distances in AFM force profiles perpendicular to the interface (0.43–0.53 nm), agree with the distances calculated in simulations for overlayers of alkane-like molecules, but not for molecules such as N 2 , water, or aromatics. Taken together, these results suggest that ordered domains observed on graphene, graphite, and other hydrophobic materials in water are consistent with alkane-like molecules occupying the interface. 
    more » « less
  4. The two-dimensional (2D) materials, represented by graphene, stand out in the electrical industry applications of the future and have been widely studied. As commonly existing in electronic devices, the electric field has been extensively utilized to modulate the performance. However, how the electric field regulates thermal transport is rarely studied. Herein, we investigate the modulation of thermal transport properties by applying an external electric field ranging from 0 to 0.4 V Å −1 , with bilayer graphene, monolayer silicene, and germanene as study cases. The monotonically decreasing trend of thermal conductivity in all three materials is revealed. A significant effect on the scattering rate is found to be responsible for the decreased thermal conductivity driven by the electric field. Further evidence shows that the reconstruction of internal electric field and generation of induced charges lead to increased scattering rate from strong phonon anharmonicity. Thus, the ultralow thermal conductivity emerges with the application of external electric fields. Applying an external electric field to regulate thermal conductivity illustrates a constructive idea for highly efficient thermal management. 
    more » « less
  5. Abstract The transport of water through nanoscale capillaries/pores plays a prominent role in biology, ionic/molecular separations, water treatment and protective applications. However, the mechanisms of water and vapor transport through nanoscale confinements remain to be fully understood. Angstrom-scale pores (~2.8–6.6 Å) introduced into the atomically thin graphene lattice represent ideal model systems to probe water transport at the molecular-length scale with short pores (aspect ratio ~1–1.9) i.e., pore diameters approach the pore length (~3.4 Å) at the theoretical limit of material thickness. Here, we report on orders of magnitude differences (~80×) between transport of water vapor (~44.2–52.4 g m −2 day −1 Pa −1 ) and liquid water (0.6–2 g m −2 day −1 Pa −1 ) through nanopores (~2.8–6.6 Å in diameter) in monolayer graphene and rationalize this difference via a flow resistance model in which liquid water permeation occurs near the continuum regime whereas water vapor transport occurs in the free molecular flow regime. We demonstrate centimeter-scale atomically thin graphene membranes with up to an order of magnitude higher water vapor transport rate (~5.4–6.1 × 10 4  g m −2 day −1 ) than most commercially available ultra-breathable protective materials while effectively blocking even sub-nanometer (>0.66 nm) model ions/molecules. 
    more » « less