skip to main content


Search for: All records

Award ID contains: 1939263

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coral reefs are home to over two million species and provide habitat for roughly 25% of all marine animals, but they are being severely threatened by pollution and climate change. A large amount of genomic, transcriptomic, and other omics data is becoming increasingly available from different species of reef-building corals, the unicellular dinoflagellates, and the coral microbiome (bacteria, archaea, viruses, fungi, etc.). Such new data present an opportunity for bioinformatics researchers and computational biologists to contribute to a timely, compelling, and urgent investigation of critical factors that influence reef health and resilience. 
    more » « less
  2. Remote scientific collaborations have been pivotal in generating scientific discoveries and breakthroughs that accelerate research in many fields. Emerging VR applications for remote work, which utilize commercially available head-mounted displays (HMDs), offer the promise to enhance collaboration, through spatial and embodied experiences. However, there is little evidence on how professionals in general, and scientists in particular, could use existing commercial VR applications to support their cognitive and creative collaborative processes while exploring real-world data as part of day-to-day collaborative work. In this paper, we present findings from an empirical study with 14 coral reef scientists, examining how they chose to utilize available resources in existing virtual environments for their ongoing data-driven collaborative research. We shed light on scientists’ data organization practices, identify affordances unique to VR for supporting cognition in a collaborative setting, and highlight design requirements for supporting cognitive and creative collaboration processes in future tools. 
    more » « less
  3. Garoufallou, E. ; Ovalle-Perandones, MA. ; Vlachidis, A (Ed.)
  4. Abstract Reproducibility of research is essential for science. However, in the way modern computational biology research is done, it is easy to lose track of small, but extremely critical, details. Key details, such as the specific version of a software used or iteration of a genome can easily be lost in the shuffle or perhaps not noted at all. Much work is being done on the database and storage side of things, ensuring that there exists a space-to-store experiment-specific details, but current mechanisms for recording details are cumbersome for scientists to use. We propose a new metadata description language, named MEtaData Format for Open Reef Data (MEDFORD), in which scientists can record all details relevant to their research. Being human-readable, easily editable and templatable, MEDFORD serves as a collection point for all notes that a researcher could find relevant to their research, be it for internal use or for future replication. MEDFORD has been applied to coral research, documenting research from RNA-seq analyses to photo collections. 
    more » « less
  5. Ma, Jian (Ed.)