ABSTRACT Tropical reef ecosystems are strongly influenced by the composition of coral species, but the factors influencing coral diversity and distributions are not fully understood. Here we demonstrate that large variations in the relative abundance of three major coral species across adjacent Caribbean reef sites are strongly related to their different low O2tolerances. In laboratory experiments designed to mimic reef conditions, the cumulative effect of repeated nightly low O2drove coral bleaching and mortality, with limited modulation by temperature. After four nights of repeated low O2, species responses also varied widely, from > 50% bleaching inAcropora cervicornisto no discernable sensitivity ofPorites furcata.A simple metric of hypoxic pressure that combines these experimentally derived species sensitivities with high‐resolution field data accurately predicts the observed relative abundance of species across three reefs. Only the well‐oxygenated reef supported the framework‐building hypoxia‐sensitiveAcropora cervicornis, while the hypoxia‐tolerant weedy speciesPorites furcatawas dominant on the most frequently O2‐deplete reef. Physiological exclusion of acroporids from these O2‐deplete reefs underscores the need for hypoxia management to reduce extirpation risk.
more »
« less
Bioinformatics of Corals: Investigating Heterogeneous Omics Data from Coral Holobionts for Insight into Reef Health and Resilience
Coral reefs are home to over two million species and provide habitat for roughly 25% of all marine animals, but they are being severely threatened by pollution and climate change. A large amount of genomic, transcriptomic, and other omics data is becoming increasingly available from different species of reef-building corals, the unicellular dinoflagellates, and the coral microbiome (bacteria, archaea, viruses, fungi, etc.). Such new data present an opportunity for bioinformatics researchers and computational biologists to contribute to a timely, compelling, and urgent investigation of critical factors that influence reef health and resilience.
more »
« less
- PAR ID:
- 10374263
- Date Published:
- Journal Name:
- Annual Review of Biomedical Data Science
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2574-3414
- Page Range / eLocation ID:
- 205 to 231
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Scleractinian corals are bathed in a sea of planktonic and particle-associated microorganisms. The metabolic products of corals influence the growth and composition of microorganisms, but interactions between corals and seawater microorganisms are underexplored. We conducted a field-based survey to compare the biomass, diversity, composition, and functional capacity of microorganisms in small-volume seawater samples collected adjacent to five coral species with seawater collected > 1 m away from the reef substrate on the same reefs. Seawater collected close to corals generally harbored copiotrophic-type bacteria and its bacterial and archaeal composition was influenced by coral species as well as the local reef environment. Trends in picoplankton abundances were variable and either increased or decreased away from coral colonies based on coral species and picoplankton functional group. Genes characteristic of surface-attached and potentially virulent microbial lifestyles were enriched in near coral seawater compared to reef seawater. There was a prominent association between the coral Porites astreoides and the coral symbiont Endozoicomonas, suggesting recruitment and/or shedding of these cells into the surrounding seawater. This evidence extends our understanding of potential species-specific and reef site-influenced microbial interactions that occur between corals and microorganisms within this near-coral seawater environment that we propose to call the “coral ecosphere.” Microbial interactions that occur within the coral ecosphere could influence recruitment of coral-associated microorganisms and facilitate the transfer of coral metabolites into the microbial food web, thus fostering reef biogeochemical cycling and a linkage between corals and the water column.more » « less
-
Abstract Degradation and loss of coral reefs due to climate change and other anthropogenic stressors has fueled genomics, proteomics, and genetics research to investigate coral stress response pathways and to identify resilient species, genotypes, and populations to restore these biodiverse ecosystems. Much of the research and conservation effort has understandably focused on the most taxonomically rich regions, such as the Great Barrier Reef in Australia and the Coral Triangle in the western Pacific. These ecosystems are analogous to tropical rainforests that also house enormous biodiversity and complex biotic interactions among different trophic levels. An alternative model ecosystem for studying coral reef biology is the relatively species poor but abundant coral reefs in the Hawaiian Archipelago that exist at the northern edge of the Indo‐Pacific coral distribution. The Hawaiian Islands are the world's most isolated archipelago, geographically isolated from other Pacific reef systems. This region houses about 80 species of scleractinian corals in three dominant genera (Porites,Montipora, andPocillopora). Here we briefly review knowledge about the Hawaiian coral fauna with a focus on our model species, the rice coralMontipora capitata. We suggest that this simpler, relatively isolated reef system provides an ideal platform for advancing coral biology and conservation using multi‐omics and genetic tools.more » « less
-
Abstract Coral reefs are complex marine habitats that have been hypothesized to facilitate functional specialization and increased rates of functional and morphological evolution. Wrasses (Labridae: Percomorpha) in particular, have diversified extensively in these coral reef environments and have evolved adaptations to further exploit reef-specific resources. Prior studies have found that reef-dwelling wrasses exhibit higher rates of functional evolution, leading to higher functional variation than in non-reef dwelling wrasses. Here, we examine this hypothesis in the lower pharyngeal tooth plate of 134 species of reef and non-reef-associated labrid fishes using high-resolution morphological data in the form of micro-computed tomography scans and employing three-dimensional geometric morphometrics to quantify shape differences. We find that reef-dwelling wrasses do not differ from non-reef-associated wrasses in morphological disparity or rates of shape evolution. However, we find that some reef-associated species (e.g., parrotfishes and tubelips) exhibit elevated rates of pharyngeal jaw shape evolution and have colonized unique regions of morphospace. These results suggest that while coral reef association may provide the opportunity for specialization and morphological diversification, species must still be able to capitalize on the ecological opportunities to invade novel niche space, and that these novel invasions may prompt rapid rates of morphological evolution in the associated traits that allow them to capitalize on new resources.more » « less
-
Caroselli, Erik (Ed.)The North Atlantic Oscillation (NAO) has been hypothesized to drive interannual variability in Bermudan coral extension rates and reef-scale calcification through the provisioning of nutritional pulses associated with negative NAO winters. However, the direct influence of the NAO on Bermudan coral calcification rates remains to be determined and may vary between species and reef sites owing to implicit differences in coral life history strategies and environmental gradients across the Bermuda reef platform. In this study, we investigated the connection between negative NAO winters and Bermudan Diploria labyrinthiformis , Pseudodiploria strigosa , and Orbicella franksi coral calcification rates across rim reef, lagoon, and nearshore reef sites. Linear mixed effects modeling detected an inverse correlation between D . labyrinthiformis calcification rates and the winter NAO index, with higher rates associated with increasingly negative NAO winters. Conversely, there were no detectable correlations between P . strigosa or O . franksi calcification rates and the winter NAO index suggesting that coral calcification responses associated with negative NAO winters could be species-specific. The correlation between coral calcification rates and winter NAO index was significantly more negative at the outer rim of the reef (Hog Reef) compared to a nearshore reef site (Whalebone Bay), possibly indicating differential influence of the NAO as a function of the distance from the reef edge. Furthermore, a negative calcification anomaly was observed in 100% of D . labyrinthiformis cores in association with the 1988 coral bleaching event with a subsequent positive calcification anomaly in 1989 indicating a post-bleaching recovery in calcification rates. These results highlight the importance of assessing variable interannual coral calcification responses between species and across inshore-offshore gradients to interannual atmospheric modes such as the NAO, thermal stress events, and potential interactions between ocean warming and availability of coral nutrition to improve projections for future coral calcification rates under climate change.more » « less